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Abstract 
This study investigates the impact of consensus mechanism changes on cryptocurrency markets within the framework of the efficient 
market hypothesis, focusing on Ethereum’s transition from Proof-of-Work to Proof-of-Stake consensus, known as the Ethereum 2.0 
‘The Merge’ update. Two main hypotheses guide the enquiry: (i) ‘The Merge’ update will significantly enhance market efficiency and (ii) 
Ethereum’s updates will have a greater impact on market efficiency compared to other cryptocurrencies. Using the Hurst exponent’s 
R/S statistic, changes in Ethereum’s long-term memory characteristics before and after major hard forks are quantified. The analysis 
reveals substantial improvements in Ethereum’s market efficiency following the Ethereum 2.0 hard fork, attributed to the introduction 
of Proof-of-Stake, which enhanced transaction speed and built trust. These findings suggest a positive trajectory towards improved 
efficiency in Ethereum’s market, particularly with ‘The Merge’ update. In conclusion, this study contributes to understanding the role of 
consensus mechanisms in cryptocurrencies and provides insights into future market trends resulting from such changes. 
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1. Introduction 

1.1 History and Forks of Ethereum 

Ethereum, introduced by Vitalik Buterin in 2014, is an open-
source, blockchain-based platform that utilises decentralised 
technology to address challenges like high transaction costs 
and information disparities [1]. Smart contracts are central to 
this transformation, streamlining asset transactions and 
reducing reliance on intermediaries [2]. Ethereum requires 
computational resources for transactions and ‘smart contract’ 
execution, with fees denominated in Ether (ETH) [3]. Unlike 
traditional cryptocurrencies like Bitcoin, Ethereum enables the 
creation and execution of decentralised applications (DApps) 
[4]. While Bitcoin has consistently utilised the Proof-of-Work 
(PoW) consensus mechanism since its inception [5], Ethereum 
was designed to transition from PoW to a more energy-
efficient Proof-of-Stake (PoS) consensus mechanism.  Table 1 
provides definitions of key terms used in this article. 

The Ethereum network was launched on 30 July 2015. In June 
2016, a security breach led to the unlawful appropriation of 
about 3.6 million ETH. The Ethereum community chose a hard 
fork to rectify the transactions and restore affected investors’ 
assets. A ‘hard fork’ signifies a substantial modification to a 

blockchain’s operations, leading to a significantly different 
protocol. These changes may generate conflicts, potentially 
causing a division within the blockchain. In contrast, a ‘soft 
fork’ denotes a less drastic alteration [6]. The decision faced 
resistance, causing a schism in the Ethereum ecosystem, 
resulting in Ethereum Classic and the restructured Ethereum, 
which differ in consensus mechanisms and governance. 

Ethereum achieved a market capitalisation of over $20 billion 
in June 2017. The Byzantium hard fork in October 2017 
improved smart contract security and reduced mining 
rewards. The Constantinople update in February 2019 
optimised the EVM and delayed difficulty bombs, paving the 
way for Ethereum’s transition from PoW to PoS. PoW 
assigns network participants the challenge of solving 
complex mathematical puzzles, where individuals with more 
computational power have a greater chance of forming new 
blocks [7]. In PoS, participants validate transactions and 
create blocks based on their cryptocurrency holdings. 
Validators stake a predetermined amount of coins and gain 
the privilege to authenticate new blocks, receiving rewards in 
the same cryptocurrency [7]. ‘The Merge’ occurred on 15 
September 2022, a focal point of this study. Table 2 
summarises key Ethereum network updates and their 
objectives [5, 8, 9]. 
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1.2 Consensus Mechanisms of Cryptocurrency 

The consensus algorithm within a cryptocurrency is pivotal for 
maintaining the blockchain’s integrity and reliability in the 
context of technological evolutions and social acceptance [10]. 
See Table 3 for types of popular consensus algorithms. 

Table 1. Definitions of key terms used in this article.  

Key Term Definition 

ETH Abbreviation for Ethereum, the native cryptocurrency 
of the Ethereum platform. 

DApps Decentralised Applications that run on a blockchain 
network, not controlled by any single entity. 

DAO 
Decentralised Autonomous Organisation, a type of 
organisation controlled by members and not 
influenced by a central government. 

DDoS Distributed Denial of Service, a cyber-attack aiming to 
disrupt the availability of a resource. 

PoW Proof-of-Work, a consensus mechanism where 
complex computations validate transactions. 

PoS Proof-of-Stake, a consensus mechanism determining 
block validation by coin holdings. 

EVM Ethereum Virtual Machine, the runtime environment 
for Ethereum smart contracts. 

ASIC Application-Specific Integrated Circuit, hardware 
designed for specific tasks like mining. 

EMH Efficient Market Hypothesis, a theory stating that 
asset prices reflect all available information. 

Block A unit of data storage on a blockchain, recording 
transactions. 

Difficulty 
Bomb 

Mechanism in Ethereum to increase mining difficulty 
over time, encouraging a transition to PoS. 

Gas Cost The computational effort required to execute 
operations on the Ethereum network. 

Hard Fork A significant change to the blockchain protocol 
requiring all users to upgrade. 

Soft Fork A backward-compatible change to the blockchain 
protocol. 

The Merge Ethereum’s transition from Proof-of-Work to Proof-
of-Stake. 

Stake Holding cryptocurrency in a wallet to support 
blockchain network operations. 

Validator Responsible for storing data and adding new blocks in 
a PoS blockchain. 

Economic 
Layer 

The layer in blockchain architecture where economic 
incentives are defined. 

  

It fosters agreement among network participants, ensuring the 
legitimacy of each block [11]. 

Consensus algorithms serve essential roles in blockchain 
networks. They support decentralisation by enabling 
collaborative interactions among nodes, preserve data 
integrity without relying on central authorities, and maintain 
trust by safeguarding against tampering [12]. They also 
function as governance and participation mechanisms, 
empowering cryptocurrency holders to engage in network 
activities and receive rewards, fostering community 
ownership [7, 13]. 

Efficient consensus algorithms offer benefits like improved 
transaction processing, enhanced performance, and increased 
scalability. The choice of consensus mechanism depends on 
the network’s purpose and characteristics [11]. PoW is the 
most popular, followed by PoS and Delegated Proof-of-Stake 
(DPoS) [14]. 

Table 2. The major forks and updates to the Ethereum blockchain 
(https://ethereum.org/en/history/ and 
https://github.com/ethereum, accessed on 7 August 2023). 

Date Fork Name Summary 
30 Jul 2015 Ethereum (Frontier) Ethereum blockchain launch. 

7 Sep 2015 Ice Age  
(Frontier Thawing) 

First (unplanned) fork, 
providing security and speed 
updates. Introduced the 
difficulty bomb to ensure a 
future PoS hard fork. 

14 Mar 2016 Homestead Enabled ETH transactions and 
smart contract deployment. 

20 Jul 2016 The DAO 

US $50 million stolen. 
Community hard forked to 
recover funds, leading to 
Ethereum Classic formation. 

2016 ~ Ethereum Classic Ethereum Classic split due to 
the DAO controversy. 

18 Oct 2016 Tangerine Whistle Response to DDoS attacks. 
22 Nov 2016 Spurious Dragon Response to DDoS attacks. 

16 Oct 2017 Byzantium 

Reduced mining rewards, 
delayed difficulty bomb, added 
non-state-changing contract 
calls. 

28 Feb 2019 Constantinople 

Ensured blockchain 
functionality pre-PoS, optimised 
gas costs, added interaction with 
non-existent addresses. 

8 Dec 2019 Istanbul Optimised the gas cost. 

2 Jan 2020 Muir Glacier 

Delayed the difficulty bomb (by 
increasing the block difficulty of 
the PoW consensus 
mechanism). 

15 Apr 2021 Berlin 
Optimised gas costs for certain 
EVM actions. Increased support 
for multiple transaction types. 

5 Aug 2021 London 
Reformed transaction fees (EIP-
1559), changed gas refunds and 
Ice Age schedule. 

9 Dec 2021 Arrow Glacier Pushed back difficulty bomb. 
30 Jun 2022 Gray Glacier Pushed back difficulty bomb. 

6 Sep 2022 Bellatrix 
Prepared Beacon Chain for ‘The 
Merge’, updated fork choice 
rules. 

15 Sep 2022 Paris (The Merge) Switched from PoW to PoS. 

12 Apr 2023 Shanghai Enabled staking withdrawals on 
the execution layer. 

12 Apr 2023 Capella 

Enabled staking withdrawals 
and automatic account sweeping 
on the consensus layer (Beacon 
Chain). 

Ethereum initially adopted PoW but was designed to transition 
to PoS [1]. After a series of upgrades, ‘The Merge’ successfully 
completed the transition on 15 September 2022. 
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Table 3. Types of popular consensus mechanism 
(https://crypto.com/university/consensus-mechanisms-explained, 
accessed on 2 October 2023). 

Types of Consensus 
Mechanism Description 

Proof-of-Work  
(PoW) 

Miners solve complex mathematical 
problems to add blocks, rewarded for being 
first. Used in Bitcoin and Ethereum. 

Proof-of-Stake  
(PoS) 

Validators stake cryptocurrency as collateral, 
chance to create blocks based on amount 
staked. Energy-efficient. Used in Ethereum 
2.0, Cardano, Polkadot. 

Delegated Proof-of-
Stake (DPoS) 

Similar to PoS, but with voted delegates 
creating blocks. Enhances scalability and 
speed. Used in EOS, Tron, Lisk. 

Proof of Importance 
(PoI) 

Considers transaction quality and reputation 
to determine block creation ability. Prevents 
centralisation. Used in NEM. 

Proof of Capacity  
(PoC) 

Uses storage capacity for mining. Miners plot 
nonce and block hashes before mining. Used 
in Burstcoin, Chia, Storj. 

Proof of Elapsed Time 
(PoET) 

Assigns random waiting times to miners, first 
to wake up creates a block. Used in 
Hyperledger Sawtooth. 

Proof of Activity  
(PoA) 

Combines PoW and PoS. Miners create 
empty blocks through PoW, holder with 
most coins adds transactions through PoS. 

Proof of Authority 
(PoA) 

Used in private/permissioned blockchains. 
Relies on participant reputation. Used in 
VeChain. 

Proof of Burn  
(PoB) 

Miners burn cryptocurrency, higher burn 
amount increases block creation chance. 
Used in Slimcoin. 

Byzantine Fault 
Tolerance (BFT) 

Focuses on consensus with malicious nodes. 
Regulates communication using 
cryptography. Used in Hyperledger Fabric, 
Zilliqa. 

The shift from PoW to PoS carries profound technical, social 
and economic implications. Technically, it enhances scalability 
and energy efficiency by allowing users to participate in block 
creation through deposits [12]. Socially, it amplifies 
decentralisation by fostering wider participation, making the 
network more inclusive [15, 16]. Economically, PoS 
significantly reduces hardware and energy expenses compared 
to PoW, improving profitability for participants [15]. 
Moreover, the transition reshapes the token economy, an 
economic system where tokens serve as a versatile medium of 
exchange [17]. The token economy model design, which 
incentivises user participation, is crucial for sustainable 
business growth [18, 19]. PoS incentivises stakers who uphold 
network security and create blocks, altering token distribution 
dynamics and encouraging broader involvement [20, 21]. 

However, the potential market impact of Ethereum’s 
consensus change through the hard fork must be 
acknowledged. Hard forks can result in new networks due to 
community disagreements, challenging compatibility with the 
existing virtual asset ecosystem and potentially impacting 
investor confidence and market stability [22]. 

1.3 Research Structure 

This study delves into Ethereum’s history of major hard forks, 
providing context for the Ethereum 2.0 transition and 
establishes the theoretical foundations of EMH and long-term 
memory. The research objectives and hypotheses are outlined, 
focusing on empirically validating the impact of Ethereum 
2.0’s consensus change, comparing it with other major updates, 
and examining the repercussions on other cryptocurrency 
markets. Data sources and analytical methods used to assess 
the impact of consensus changes on cryptocurrency markets 
using the EMH framework are explained. A comparative 
analysis of market trends before and after the Ethereum 2.0 
hard fork is conducted to advance our comprehension of 
cryptocurrency dynamics and evolution. The findings are 
consolidated, emphasising the implications of the consensus 
change on cryptocurrency markets, and offering insights for 
policymakers and practitioners. Study limitations and potential 
avenues for future research are acknowledged. 

2. Theoretical Background 

2.1 Efficient Market Hypothesis and Long-Term Memory of 
Virtual Asset Markets 

EMH posits that market prices rapidly integrate all available 
information, making it nearly impossible for investors to 
consistently outperform the market average return. EMH has 
been rigorously examined in various financial contexts, 
including stock markets, financial forecasting, capital markets, 
foreign exchange markets and cryptocurrency markets [23–
30]. EMH offers three forms: (i) Strong form EMH assumes 
that all information, both public and private, is reflected in a 
security’s current market price. This means that even insider 
information cannot be used to consistently generate abnormal 
returns. (ii) Semi-strong form EMH assumes that all publicly 
available information is reflected in a security’s current market 
price. This includes not only past prices and trading volumes 
but also news announcements, financial statements and other 
publicly available data. In other words, fundamental analysis 
cannot be used to consistently generate abnormal returns. (iii) 
Weak form EMH assumes that all past prices and trading 
volumes of security are reflected in its current market price. In 
other words, technical analysis cannot be used to consistently 
generate abnormal returns [26]. Our study follows the weak 
form EMH assumption. 

In time series analysis, long-term memory refers to a property 
where, following a disturbance, the autocorrelation function 
gradually diminishes but retains a lasting impact [31]. 
Identifying long-term memory in asset price changes implies 
historical shocks that persistently influence an asset’s price, 
indicating market inefficiency. The presence of long-term 
memory in cryptocurrency price fluctuations suggests 
potential predictability of future returns, uncovering 
inefficiencies. Recent studies have probed these aspects in 
virtual assets: 
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Bartos (2015) initially observed that Bitcoin’s price promptly 
responds to public information, implying market efficiency in 
swiftly reflecting known data. This observation suggests that 
Bitcoin behaves like a standard economic commodity, with its 
price determined through market supply and demand 
dynamics, a hallmark of efficient markets [32]. Urquhart 
(2016) scrutinised the efficiency of the Bitcoin market and 
noted its evolution from inefficiency to efficiency [33]. 
Bariviera (2017) also suggested that the Bitcoin market is not 
entirely efficient but has improved over time [34]. Nadarajah 
(2017) proposed a power transformation of Bitcoin returns 
satisfying EMH [35]. Khuntia and Pattanayak (2018) found 
Bitcoin’s efficiency with exceptions during specific periods 
[36]. Mnif (2020) detected a positive impact of the COVID-19 
pandemic on the cryptocurrency market efficiency [37]. 
López-Martín et al. (2021) investigated the efficiency of 
various cryptocurrencies and concluded that Bitcoin and 
Ethereum markets’ inefficiency tends to diminish over time 
evolving to more efficient markets [38]. 

Comparatively, Mensi et al. (2019) discovered Bitcoin and 
Ethereum markets to be inefficient, with Bitcoin exhibiting 
slightly greater inefficiency overall, though the efficiency varies 
across subperiods [39]. Zargar and Kumar (2019) found 
informational inefficiency in Bitcoin returns at higher 
frequencies [40]. Gregoriou (2019) attributed cryptocurrency 
market inefficiency to investors obtaining significant returns 
[41]. Fidrmuc et al. (2020) suggested that Bitcoin, Ethereum 
and Litecoin markets displayed short-term inefficiency in 
2017–2018 [42]. Fousekis and Grigoriadis (2021) proposed 
volume-to-returns predictability which indicates informational 
inefficiency in major cryptocurrencies’ markets [43]. Yi et al. 
(2022) suggested Bitcoin’s efficiency is lower than gold, USD 
and stock indices but not significantly different long-term [44]. 

The study of Ethereum forks holds pivotal importance in the 
cryptocurrency domain. Hard fork is anticipated to bolster 
Ethereum’s network scalability and decentralisation, 
potentially yielding positive effects not only for Ethereum but 
also for the broader cryptocurrency market. However, 
consensus is lacking on cryptocurrency market efficiency [45]. 
In the field of capital market research, the EMH bears 
significance that extends beyond geographical and currency 
boundaries [46, 47] and remains relevant regardless of study 
time frames [48–50]. Notably, there is a shortage of research 
that delves into the precise implications of alterations in 
cryptocurrency consensus mechanisms on market efficiency.  

2.2 Research Hypothesis 

Decentralisation has a relationship with liquidity [51], and it 
can be inferred that liquidity and the number of active users 
may have a positive impact on market efficiency [52]. 
Extending EMH to the technical and intrinsic aspects of 
cryptocurrencies, our hypothesis suggests that the degree of 
decentralisation in a cryptocurrency, as determined by factors 
like liquidity and the number of active users, correlates with 
market efficiency. 

Hypothesis 1: The efficiency enhancement effect induced by 
the Ethereum 2.0 ‘The Merge’ update will be particularly 
pronounced. This hypothesis aims to confirm that as Ethereum 
progresses towards achieving its decentralisation objectives, the associated 
efficiency gains will be notably pronounced. 

Hypothesis 2: Ethereum will exhibit a greater degree of 
efficiency improvement following updates compared to other 
cryptocurrencies. If it is true, this hypothesis suggests that 
cryptocurrencies moving closer to decentralisation goals will see notable 
increases in market efficiency. 

3. Methods and Data 

To assess the impact of decentralisation enhancements 
through changes in cryptocurrency consensus mechanisms, the 
analysis encompasses five cryptocurrencies: Ethereum, 
Bitcoin, Ethereum Classic, Ripple and Tether. These selections 
were based on criteria such as user base, market capitalisation, 
trading volume and general popularity. 

Ripple functions as an international remittance currency aimed 
at expediting cross-border transactions involving traditional 
currencies. Unlike decentralised cryptocurrencies that permit 
broad participation as validators, Ripple adopts a more 
centralised approach, restricting validation authority to a 
limited number of pre-verified entities. This strategy enhances 
transaction verification speed. Ripple operates as a for-profit 
company, setting it apart from cryptocurrencies that adhere 
more closely to decentralisation ideology [53].  

Tether, introduced in 2014, functions as a blockchain platform 
facilitating the digital spending of fiat money. Tether is a 
stablecoin, a type of cryptocurrency, with its value directly tied 
to real-world fiat currencies and tangible assets like gold, crude 
oil and legal tender. Tether serves as a foundational currency for 
acquiring other cryptocurrencies on various exchanges [54]. 

• Bitcoin and Ethereum Classic adhere to PoW, 
characterised by high energy consumption, limitations in 
scalability and transaction speed.  

• Ripple deviates from decentralisation principles due to 
constraints on validators.  

• Tether, in contrast to the overarching cryptocurrency 
philosophy of decentralisation, serves as a foundational 
currency tightly linked to centralised traditional finance. 

3.1 Research Methods 

This study employed the Hurst exponent, calculated through 
rescaled range (R/S) analysis, to assess the long-term memory of 
time series data. The Hurst exponent, developed by Hurst (1951) 
and evolved into a fundamental tool in fractal geometry, has 
found successful applications in various domains, including 
financial analysis [29, 44, 55], hydrological and climatological 
sciences [56–58], material science [59–61], control performance 
assessment [62–64], meteorology [65–67] and biosciences [68–
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70]. The Hurst exponent’s versatility and effectiveness make it 
invaluable for investigating time series data, including our 
examination of cryptocurrency market efficiency. 

R/S analysis is robust to heavy tails in the underlying process 
and does not need strict assumptions about probability 
distributions, supporting its adaptability across domains 
concerning long-term dependencies and complexity. We 
utilised the Python Hurst package to measure the degree of 
long-term memory in our data. R/S analysis has broad 
applicability, extending to fields like finance, environmental 
studies and signal processing. It is resilient to heavy-tailed 
distributions and doesn’t require stringent assumptions about 
probability distributions [71], making it suitable for analysing 
long-term dependencies and complexity in various domains. 

The R/S statistic calculates the range of values that average the 
deviation from the mean for each time series, rescaled by the 
standard deviation of the returns, and can be measured as 
follows [72]: 

(𝑅/𝑆)! =
1
𝑆!
(max
"#$#!

,
1
𝑛.

(𝑟% − 𝑟!)
$

%&"

1 − min
"#$#!

,
1
𝑛.

(𝑟% − 𝑟!)
$

%&"

14 

where {𝑟!, 𝑟", 𝑟#, ⋯ , 𝑟$} is the return of the cryptocurrency at 
each point in time, 𝑟%  is its average &!

%
∑ 𝑟$%
$&! (  and 𝑛  

represents the length of the time series. And 𝑆% is the standard 
deviation of the return, which is calculated as follows: 

𝑆! = #
1
𝑛
&(𝑟! − 𝑟!)"
#

+

$
"
 

Hurst (1951) found that the statistic is proportional to the 
𝐻(Hurst’s exponent) power of 𝑛. This relationship can be 
expressed as follows: 

,%
&
-
!
= 𝑐 × (𝑛)' , 

where 𝑐  is some constant. Taking logarithms on both sides 
and summing them up, the following relationship is obtained: 

log ,%
&
-
!
= log 𝑐 + 𝐻 log(𝑛), 

where a simple regression model with the calculated 
log &'

(
(
%

as the dependent variable and log(𝑛)  as the 
explanatory variables can be estimated using least squares to 
obtain a slope estimate, the Hurst index. Interpretation of the 
Hurst exponent is contingent on its values: 

•	𝐻 > 0.5: Signifies a persistent trend in the time series. This 
implies that either the existing uptrend will continue upward 

or the existing downtrend will persist downward. 
•	 𝐻  = 0.5: Represents a completely random walk. In this 
scenario, no discernible predictive pattern for future volatility 
exists, aligning with the principles of the EMH. 
•	𝐻  < 0.5: Indicates an anti-persistent tendency in the time 
series. This suggests that the previous uptrend will lead to a 
subsequent downtrend, and conversely, the previous 
downtrend will lead to an ensuing uptrend.  

This study employs changes in the Hurst index to assess 
Ethereum’s updates in terms of their long-term memory 
effects and impact on market efficiency. By examining these 
changes before and after each Ethereum update, we aim to 
provide evidence regarding how each update has influenced 
the market efficiency of virtual assets. 

3.2 Data 

The study uses daily closing price data for Bitcoin, Ethereum, 
Ethereum Classic, Ripple and Tether, spanning from 1 January 
2016 to 31 May 2023, obtained from coinmarketcap.com 
(https://coinmarketcap.com, assessed on 6 June 2023). These 
daily closing prices were then subjected to log-difference 
transformation to calculate daily returns. For the analysis, we 
utilised data from 26 July 2016 (the split between Ethereum 
and Ethereum Classic) to 31 May 2023, a total of 2,501 data 
points for each cryptocurrency. 

The average log-differential returns for Bitcoin, Ethereum, 
Ethereum Classic, Ripple and Tether are 0.0015, 0.0028, 0.0014, 
0.0017 and 0.0000, respectively. All of these values are positive, 
suggesting that these cryptocurrency markets exhibited an overall 
upward trend during the study period. The standard deviation is 
notably higher than the rate of return, indicating that the volatility 
in these cryptocurrency markets was significant throughout the 
study period. Both skewness and kurtosis values indicate that the 
returns of all five markets do not conform to a normal 
distribution, implying that they exhibit non-normal behaviour in 
their return patterns [73].  Refer to Table 4 for descriptive 
statistics of log-difference rate returns of five virtual assets. Figure 
1 shows the price of these assets during the entire period, while 
Figure 2 illustrates their log-difference rate of return. 

Table 4. Descriptive statistics of log-difference rate return of five 
virtual assets. 

 Bitcoin Ethereum Ethereum 
Classic Ripple Tether 

Count 2707 2707 2501 2707 2707 
Mean 0.0015 0.0028 0.0014 0.0017 0.0000 

Median 0.0018 0.0008 −0.0005 −0.0015 0.0000 
Maximum 0.2251 0.3041 1.4443 1.0274 0.0566 
Minimum −0.4647 −0.5507 −0.5064 −0.6163 −0.0526 

Std. 0.0385 0.0556 0.0708 0.0659 0.0047 
Skewness 0.0018 0.0008 −0.0005 −0.0015 0.0000 
Kurtosis 11.3393 7.8201 74.4897 36.4056 37.6493 
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Figure 1. Price of five virtual assets during the entire period. 
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Figure 2. Log-difference rate of return of five virtual assets during the entire period. 
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4. Results and Discussion 

4.1 Normality and Unit-Root Test 

Table 5. Normality test of five virtual assets’ log-difference rate return. 

Normalit
y 

Test 
Bitcoin Ethereum Ethereum 

Classic Ripple Tether 

Jarque-
Bera 

1.4680e4*
** 

0.6901e4**
* 

58.0677e4*
** 

15.0836e4*
** 

15.9404e4*
** 

Kolmogor
ov-

Smirnov 
0.4482*** 0.4319*** 0.4265*** 0.4334*** 0.4888*** 

Anderson
-Darling 

59.5668**
* 50.4348*** 92.3943*** 134.7214**

* 
311.2848**
* 

* p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01 

Table 5 presents the outcomes of the Jarque-Bera, 
Kolmogorov-Smirnov and Anderson-Darling tests used to 
assess the normality of return probability distributions. The 
Jarque-Bera test checks if data follows a normal distribution 
based on skewness and kurtosis. The Kolmogorov-Smirnov 
test is nonparametric and compares data’s distribution to the 
normal distribution. The Anderson-Darling test, based on 
cumulative distribution, detects departures from normality 
[74]. The results consistently reject the null hypothesis of 
normality for all five cryptocurrencies return time series. A 
high kurtosis in a distribution often suggests the presence of 
more extreme values or ‘fat tails’ compared to a normal 
distribution. These fat-tailed distributions may exhibit long 
memory characteristics, implying a persistent dependency over 
time in the data series [75, 76].   

Table 6. Unit-root test results of five virtual assets’ log-difference 
rate return. 

Unit-root 
Test Bitcoin Ethereum Ethereum 

Classic Ripple Tether 

Augmente
d Dickey-

Fuller 
(ADF) 

-
36.0853*
** 

-9.7025*** -8.7511*** -
11.1166*** 

-
12.3097**
* 

Phillips-
Perron 
(PP) 

-
53.4699*
** 

-
53.6693*** 

-
57.6344*** 

-
54.5986*** 

-
92.8047**
* 

Kwiatkows
ki-Phillips-
Schmidt-

Shin 
(KPSS) 

0.2578* 0.5432** 0.1825* 0.1979* 0.0075* 

* p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01 

Table 6 summarises the findings from unit-root tests. The 
ADF test involves regressing the first difference of the time 
series on its lagged values and then examining the t-statistic of 
the coefficient on the lagged value. The PP test, similar to the 
ADF test, addresses serial correlation differently and employs 
a robust variance estimator for handling heteroskedasticity. 
The KPSS test is a two-sided assessment testing stationarity 

against a unit-root [77, 78]. The results indicate the absence of 
a unit-root in all five cryptocurrencies return time series. Both 
the ADF and PP test statistics yield significantly negative 
values, allowing us to reject the null hypothesis of a unit-root 
at the 1% significance level. Furthermore, the KPSS test 
statistics align with these results. Consequently, we can 
conclude that all five cryptocurrencies market return time 
series analysed can be considered stationary. 

4.2 Hurst Exponent (R/S) 

Table 7. Hurst exponent of five virtual assets according to test 
subperiods. 

Event  
(Period) Bitcoin Ethereum Ethereum 

Classic Ripple Tether 

After Ethereum  
hard fork  

(26 Jul 2016  
~ 16 Oct 2017) 

0.5887 0.7088 0.5950 0.6980 0.5850 

After Byzantium 
update  

(17 Oct 2017  
~ 28 Feb 2019) 

0.6311 0.6753 0.5487 0.6765 0.4718 

After Constantinople 
update 

(01 Mar 2019  
~ 15 Sep 2022) 

0.6021 0.6042 0.5976 0.5448 0.4404 

After ‘The Merge’ 
update 

(16 Sep 2022  
~ 31 May 2023) 

0.5781 0.5083 0.5694 0.5381 0.6275 

Table 7 illustrates that Ethereum’s updates generally influence 
the Hurst index of the cryptocurrency market. Right after 
Ethereum’s split, the Hurst index of Ethereum stands at 
0.7088, marking the highest within the entire observation 
period. However, as updates progress, Ethereum’s Hurst 
index consistently declines. After ‘The Merge’ update, it 
experiences the most significant reduction, plummeting from 
0.6042 to 0.5083, thus approaching a value close to 0.5. 

Following the Ethereum split, all virtual assets display a 
persistent trend, with Ethereum exhibiting the highest index. 
Subsequent to the Byzantine update, the indices of Ethereum, 
Ethereum Classic and Ripple experienced slight decreases but 
still indicated a degree of persistence. Conversely, for Bitcoin, 
the index increased from 0.5887 to 0.6311, signifying a 
reinforced continuation trend. 

Notably, after ‘The Merge’ update, Ethereum’s Hurst 
exponent dropped from 0.6042 to 0.5083, indicating a 
reduction in long-term memory characteristics within the time 
series data. During the same period, the Hurst exponent of 
other cryptocurrencies decreased, approaching the 0.5 mark, 
suggesting a reduction in long-term memory effects. However, 
Tether exhibited a distinct pattern, with its index increasing 
from 0.4404 to 0.6275. Interestingly, the change in Ethereum’s 
consensus mechanism had minimal impact on Tether, which 
stands out as the least decentralised cryptocurrency. 
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The analysis reveals that Ethereum’s market efficiency has 
steadily improved with each update since its inception. 
Although there was a pronounced trend at the beginning, it 
gradually weakened over time, with the most significant 
reduction in long-term dependence occurring with the 
Ethereum 2.0 ‘The Merge’ update. This implies a substantial 
improvement in the efficiency of the Ethereum market, 
aligning it more closely with the characteristics of an efficient 
market. 

4.3 Ethereum Updates and Market Efficiency  

The changes in the Hurst index provide insights into how 
each Ethereum update has impacted the market efficiency of 
virtual assets. Before the Byzantine update, both Ethereum 
and Ethereum Classic exhibited Hurst indexes exceeding 0.5, 
signifying a trend of market continuity. This implies that 
these markets might not have been fully efficient in 
incorporating available information. These inefficiencies 
could be attributed to the network divergence resulting from 
the community split. The newly forked Ethereum displayed 
an even higher Hurst index, indicating heightened confusion 
among participants during this transition. The split also 
introduced unforeseen vulnerabilities, underscoring its 
significant impact on participant behaviour and network 
security [79].  

The Byzantium update in October 2017 aimed to improve 
smart contract functionality, enhance platform efficiency and 
introduce faster transaction speeds [80]. Following the 
Byzantine update, Ethereum’s Hurst index dropped to 0.6753, 
signifying an enhancement in market efficiency. 

The Constantinople update in February 2019 represented a 
significant stride in Ethereum’s evolution as it moved towards 
transitioning from PoW to PoS. The primary focus was on 
optimising EVM operators’ efficiency and mitigating the 
potential impact of the ‘difficulty bomb’. After the 
Constantinople update, the Hurst index declined further from 
0.6753 to 0.6042, bringing it closer to the 0.5 threshold. This 
shift indicated a weakening market trend and a transition 
towards a more balanced pattern in Ethereum’s market 
dynamics. This result provides partial support for Hypothesis 1, 
which suggested that Ethereum’s market efficiency would 
improve following major updates achieving its decentralisation 
objectives.  

‘The Merge’ update in September 2022 marked a pivotal 
moment in Ethereum’s evolution, as it aimed to transition the 
network into a more scalable and sustainable system. 
Following this update, Ethereum’s Hurst index experienced 
the most substantial decrease during the study period, 
plummeting from 0.6042 to 0.5083. This reduction brought 
Ethereum’s index closest to the 0.5 threshold among all virtual 
assets analysed. This significant decline in the Hurst index 
implies a notable improvement in market efficiency, consistent 
with Hypothesis 1. 

4.4 Consensus Mechanism (PoW and PoS) and Other 
Cryptocurrency Markets  

Beyond market efficiency, the transition from PoW to PoS 
through ‘The Merge’ update resulted in a significant reduction 
in Ethereum’s energy consumption, ranging from 99.84% to 
99.9996%. This shift has important implications from both 
social and business perspectives. From a social viewpoint, 
PoW-based cryptocurrencies like Bitcoin raised environmental 
and sustainability concerns due to their energy-intensive 
nature, while PoS-based cryptocurrencies are seen as more 
energy-efficient and eco-friendly. This could lead businesses 
and individuals concerned about environmental impact to 
favour PoS-based cryptocurrencies [9]. 

The choice between PoW and PoS consensus mechanisms has 
substantial implications for network governance and security. 
In PoS networks, security and validation are anchored in 
participants who hold stakes in the network. Validators have a 
vested interest in the network’s success, as their holdings are 
at risk. This aligns network security with economic incentives. 
Conversely, PoW networks rely on miners who contribute 
computational power to secure the network. Security is 
directly linked to miners’ capabilities and the computational 
resources they commit. The choice between PoW and PoS 
carries significant consequences for blockchain networks, 
impacting sustainability, governance and security. This 
decision should be carefully considered by cryptocurrency 
users, taking into account their objectives and values within 
the blockchain ecosystem [81].  

Bitcoin and Ethereum Classic, both adhering to PoW, 
consistently demonstrate market inefficiency with Hurst 
indexes exceeding 0.5. Interestingly, in contrast to Ethereum, 
particularly after the Constantinople update, Bitcoin and 
Ethereum Classic’s indexes exhibited striking similarity, 
highlighting comparable levels of persistence trend 
inefficiency. This lends support to Hypothesis 2, suggesting that 
the choice of consensus method significantly impacts market 
efficiency. Specifically, it suggests that PoS-type 
cryptocurrencies often foster more efficient markets 
compared to PoW-type counterparts. 

Ripple, designed primarily for financial transactions with a 
high transaction volume and a substantial user base, displayed 
a consistent decline in its Hurst index over the study period. 
This indicates a shift towards market efficiency, potentially 
attributed to positive expectations regarding the outcome of 
the ongoing litigation with the U.S. Securities and Exchange 
Commission [82]. Despite variances in decentralisation 
compared to Ethereum, Ripple’s market efficiency trends align 
with the broader trend observed. However, comprehensive 
investigation remains necessary to fully comprehend these 
trends, as they do not entirely align with prior research 
findings [53, 83]. 

In the case of Tether, the Hurst index displayed fluctuating 
patterns of inefficiency ranging between 0.4404 and 0.6275. It 
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shifted from persistence to anti-persistence and back to 
persistence, indicating an inefficient market. This outcome 
aligns with previous research findings, suggesting that the 
Tether market may not be fully efficient [54, 84]. Furthermore, 
it can be inferred that the price trend of Tether, linked to the 
USD, can be highly volatile and unstable [85]. 

4.5 Ethereum and the Efficient Market Hypothesis 

Vitalik Buterin’s primary goal in conceiving Ethereum was to 
dismantle centralised systems through the transformative 
power of blockchain technology. The Ethereum White Paper 
introduced substantial improvements in computational 
efficiency, establishing an ‘economic layer’ for executing smart 
contracts while bolstering network security and the ecosystem 
as a whole [1]. 

Smart contracts broaden market access for investors, fostering 
a more transparent and inclusive financial environment. This 
transparency mitigates information disparities, empowering all 
stakeholders to make well-informed decisions [3, 86, 87]. 

EMH posits that financial markets are ‘informationally 
efficient’, meaning participants make decisions based on all 
available information, resulting in asset prices accurately 
reflecting their true value. Blockchain technology and smart 
contracts can be used to improve market efficiency by 
gathering more accurate and timely information [88, 89], and 
markets based on smart contracts have many similarities with 
the efficient market [90]. Smart contracts can potentially 
contribute to the democratisation of governance systems by 
enabling decentralised decision-making processes and 
coordination mechanisms [91]. We suggest that Ethereum’s 
core functionality, namely smart contracts, democratises 
financial instruments. Although direct philosophical alignment 
between Ethereum and EMH is hard to find, it is possible to 
draw some parallels, i.e., both Ethereum and EMH are based 
on the idea of decentralisation and the democratisation of 
financial markets. 

5. Conclusions 

5.1 Summary and Implications 

This study examined the impact of Ethereum’s updates on 
cryptocurrency market efficiency. Ethereum’s journey, from 
inception to ‘The Merge’, demonstrated significant 
improvement in market efficiency, aligning with Hypothesis 1. 
Bitcoin and Ethereum Classic, using PoW, consistently 
exhibited market inefficiency, supporting Hypothesis 2, 
especially after the Constantinople update. Ripple displayed a 
transition towards market efficiency, potentially influenced by 
ongoing dispute. Tether’s market exhibited instability. These 
findings underscore the significance of technological 
advancements in shaping market efficiency in the 
cryptocurrency landscape. Conducting interdisciplinary 
research is essential for a comprehensive understanding of 
these dynamics. 

Our research yields critical insights into the cryptocurrency 
landscape. Ethereum’s consistent market improvements, 
especially through ‘The Merge’, highlight the pivotal role of 
technological advancements in enhancing market efficiency. 
This underscores the cryptocurrency market’s adaptability in 
rapidly incorporating new information into asset prices. The 
choice of consensus mechanism is a substantial factor in 
cryptocurrency market dynamics. The divergence in market 
efficiency between PoW-based cryptocurrencies, like Bitcoin 
and Ethereum Classic, and PoS-based Ethereum underscores 
the significance of these mechanisms. PoS-based 
cryptocurrencies tend to exhibit superior market efficiency, 
offering valuable guidance for investors and policymakers. 
Lastly, cryptocurrency markets are multifaceted; Ripple’s 
journey towards market efficiency, despite its unique 
decentralisation model, demonstrates that resolving securities 
disputes positively influenced its stability and efficiency. 
Conversely, Tether’s volatile behaviour exposes the instability 
of stablecoins. These findings emphasise the necessity for 
comprehensive investigations into linked assets like the USD, 
contributing to a deeper understanding of market efficiency 
within the stablecoin sector. 

5.2 Limitations and Future Research 

While this study offers valuable insights, it’s important to 
acknowledge its limitations and suggest future research 
directions. 

This research has data and methodological constraints, 
primarily relying on historical daily price data and the Hurst 
index with R/S analysis, potentially limiting the depth of 
insight. Future studies should consider broader datasets, 
various cryptocurrencies and extended periods before and 
after ‘The Merge’. The impact of data frequencies on market 
efficiency also demands exploration. Incorporating Detrended 
Fluctuation Analysis (DFA) could enhance robustness, 
especially with small sample sizes. Alternative methodologies 
like Network Analysis, System Dynamics and Transformer 
algorithms could provide a more comprehensive perspective. 

The lack of cross-market comparisons is another limitation. 
Examining market efficiency variations across different 
cryptocurrency markets, including altcoins and stablecoins, can 
illuminate unique dynamics and trends, enhancing our 
understanding of cryptocurrency interactions. 

Causality and external factors are not considered, posing a 
major limitation. Establishing causality between Ethereum’s 
updates and market efficiency remains challenging. Future 
research could explore how regulatory changes, other major 
markets or global events like the COVID-19 pandemic affect 
consumer behaviour during crises [92–94]. Controls in the 
experimental design could help clarify the causal relationship. 

In summary, this study provides valuable insights into 
cryptocurrency market dynamics, focusing on Ethereum’s 
updates and their influence on market efficiency. As the 
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market evolves, smart contract-based algorithms for pattern 
recognition and AI trading could further improve efficiency. 
Future studies should build upon these findings to develop a 
more nuanced understanding of this ever-evolving market. 
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