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Abstract
In recent years there has been a tremendous surge
in the general capabilities of AI systems, mainly
fuelled by training foundation models on internet-
scale data. Nevertheless, the creation of open-
ended, ever self-improving AI remains elusive.
In this position paper, we argue that the in-
gredients are now in place to achieve open-
endedness in AI systems with respect to a hu-
man observer. Furthermore, we claim that
such open-endedness is an essential property
of any artificial superhuman intelligence (ASI).
We begin by providing a concrete formal defini-
tion of open-endedness through the lens of novelty
and learnability. We then illustrate a path towards
ASI via open-ended systems built on top of foun-
dation models, capable of making novel, human-
relevant discoveries. We conclude by examining
the safety implications of generally-capable open-
ended AI. We expect that open-ended foundation
models will prove to be an increasingly fertile and
safety-critical area of research in the near future.

1. Introduction
Recent years have seen impressive progress in AI, mainly
driven by foundation models (Bommasani et al., 2021).
These models are increasingly used as agents in various
applications (e.g., Wang et al., 2023a; Wu et al., 2023;
Lifshitz et al., 2023; Wang et al., 2023c; Liu et al., 2023b;
Zheng et al., 2024; Ahn et al., 2022). This represents signif-
icant progress towards artificial general intelligence (AGI),
in the sense of reaching human-level performance on a wide
range of tasks (Legg and Hutter, 2007). However, we are
still missing a formal description of what it would take for
an autonomous system to self-improve towards increasingly
creative and diverse discoveries without end—a Cambrian
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explosion of emergent capabilities, behaviors, and artifacts.
This kind of open-ended invention is the mechanism by
which human individuals and society at large accumulates
new knowledge and technology. Therefore, open-endedness
must be a property of an artificial superhuman intelligence
(ASI, Morris et al., 2023) that can, by definition, accomplish
a wide range of tasks at a level which no human can match.
By the very nature of superhuman intelligence, open-ended
discovery of innovative solutions is essential to empower hu-
manity to manage its risks, just as society evolves norms and
institutions to govern increasingly capable humans across
generations (Richerson et al., 2001).

Foundation models such as large language models (LLMs)
have scaled learning to large, static datasets scraped from
the internet. Extrapolating, we may soon be running out
of high-quality textual and visual data for training such
models (Villalobos et al., 2022). Thus, open-endedness is
unlikely to arise for free by training on ever-larger datasets.
Rather, a system endowed with the open-endedness neces-
sary for ASI will eventually have to create, refute and refine
its own explanatory knowledge, in interaction with a source
of evidence (Deutsch, 2011), as well as learning what data to
learn from (Jiang et al., 2022). Moreover, for ASI to be use-
ful and safe, it is important that open-endedness be guided
towards knowledge that is understandable by and beneficial
for humanity. Foundation models and open-endedness are
orthogonal dimensions, whose combination is particularly
powerful (cf. Lehman et al., 2022; Huang et al., 2022; Chen
et al., 2023a; Meyerson et al., 2023; Zhang et al., 2023; Wu
et al., 2023; Wang et al., 2023a). Open-ended algorithms
endow foundation models with the ability to uncover new
knowledge, while foundation models guide the search space
for open-ended AI towards discovering human-relevant arti-
facts efficiently (Liu et al., 2023a; Ma et al., 2023; Romera-
Paredes et al., 2024). A formal definition of open-endedness
can catalyze progress in this direction, offering clarity and
focus to galvanize the research community.

We provide a new and precise definition of open-endedness
in Section 2, inspired by the open-ended systems in nature
that have created life, the human brain, culture, and tech-
nology, as well as open-ended systems in silico that, for
instance, have achieved superhuman level at the game of
Go (Silver et al., 2016), generated human-level adaptation
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to novel 3D tasks (Bauer et al., 2023), self-improved lan-
guage models (Fernando et al., 2023; Yang et al., 2023a),
unlocked the tech tree in Minecraft (Wang et al., 2023a),
and discovered new results in pure mathematics (Romera-
Paredes et al., 2024). Open-endedness has been understood
in a wide variety of ways (Earle et al., 2021) ever since
it gained prominence as a term in the study of artificial
life (Bedau, 1992; Bedau et al., 1998) and biological evo-
lution (Holland, 1992; McShea, 1996; Waddington, 2008).
Contrary to Stepney and Hickinbotham (2023), we believe
quantifying open-endedness is both possible and important
going forward, and, akin to Sigaud et al. (2023), we be-
lieve it can be achieved via the help of an observer external
to the system. Our definition makes formal the aphorism
of Lisa B. Soros that, as observers of an open-ended sys-
tem, “we’ll be surprised but we’ll be surprised in a way that
makes sense in retrospect”. Concretely, open-ended systems
produce increasingly novel and surprising artifacts that are
hard to predict, even for an observer who has learned to
better predict by examining past artifacts. Once a system
exhibits these characteristics, i.e. producing learnable but
novel artifacts, we call it an open-ended system. This allows
us to pinpoint the sense in which open-endedness is essen-
tial for ASI, to provide examples illustrating how existing
open-ended AI systems lack generality, and to argue that
present-day foundation models are not yet open-ended.

Historically, the field of open-endedness has faced numer-
ous challenges. Principal among these has been the problem
of structuring the search space so as to regularly produce
artifacts which are both novel and interesting to humans (Ma
et al., 2023). When humans make discoveries, they do so by
“standing on the shoulders of giant human datasets” (Clune,
2022); that is to say, utilising prior world, domain and com-
monsense knowledge, which they have acquired biologically
or culturally. Since foundation models have been trained on
vast amounts of human data, they capture human notions of
interestingness (Zhang et al., 2023). Furthermore, they are
general sequence modellers (Mirchandani et al., 2023) and
can generate variations from existing examples (Meyerson
et al., 2023), thus serving as general mutation operators.
This is compelling since with more advanced foundation
models, practical implementations of open-ended systems
become increasingly feasible. Taken together, open-ended
foundation models can both vary (i.e., mutate) data and as-
sess novelty and interestingness of real and generated data
to decide what data to further explore (i.e., select) (Jiang
et al., 2022).

In Section 3 we provide some concrete research directions
for this marriage between open-endedness and foundation
models, for example leveraging evolutionary algorithms
and reinforcement learning. Generally capable open-ended
systems may be both extremely powerful and increasingly
prevalent, prompting pressing safety considerations (Ecoffet
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Figure 1. Illustration of open-endedness definition. The defini-
tion of open-endedness hinges on a system’s ability to continuously
generate artifacts that are both novel and learnable to an observer.
Consider a system that designs various aircraft: a mouse (left)
might find these designs novel but lack the capacity to comprehend
the principles behind them; for a human studying aerospace engi-
neering (middle), the system offers both novelty and the potential
for learning, making it open-ended. However, a superintelligent
alien (right) with vast aerospace knowledge might not find the
design novel, but would still be able to analyze and understand
them. This highlights that open-endedness is observer-dependent
and that novelty or learnability alone is not enough.

et al., 2020). In Section 4, we argue that research into open-
ended systems will be essential to safely and beneficially
deploy any increasingly general and autonomous AI.

2. Defining Open-Endedness
2.1. Formal Definition

The notion of an open-ended system has received many
colloquial definitions (Soros and Stanley, 2014; Stanley
and Lehman, 2015; Stanley et al., 2017; Stanley, 2019).
More formal approaches have often focused on the case
of evolutionary systems, quantifying the increasing com-
plexity (McShea, 1996; Waddington, 2008) and perpetual
novelty (Holland, 1992) of biological evolution. Intuitively,
an open-ended system endlessly produces novel and interest-
ing artifacts. But novelty and interestingness have generally
been characterised without sufficient precision, or in an
overly narrow way. We provide a general-purpose, formal
definition of open-endedness, as follows.

Definition: From the perspective of an observer, a
system is open-ended if and only if the sequence of
artifacts it produces is both novel and learnable.

More formally, a system S produces a sequence of artifacts
Xt, indexed by time t. An observer O processes a new arti-
fact XT to determine its predictability given a history X1:t
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of past ones. O possesses a statistical model X̂t which pre-
dicts an arbitrary future artifact based on its observations of
the artifacts it has seen up to time t. The observer judges the
quality of their prediction based on a loss metric ℓ(X̂t, XT ),
or ℓ(t, T ) for short. A natural implementation of X̂t is as a
learning algorithm.

A system displays novelty if artifacts become increasingly
unpredictable with respect to the observer’s model at any
fixed time t, namely:

∀t, ∀T > t, ∃T ′ > T : E [ℓ(t, T ′)] > E [ℓ(t, T )] .

In other words, there is always a less predictable artifact
coming further in the future.1

The system is learnable whenever conditioning on a longer
history makes artifacts more predictable, namely:

∀T, ∀t < T,∀T > t′ > t : E [ℓ(t′, T )] < E [ℓ(t, T )] .

Finally, a system is open-ended from the perspective of the
observer O if and only if it generates sequences of artifacts
that are both novel and learnable (see Figure 1). The novelty
aspect ensures the presence of information gain within the
system, while learnability guarantees that this information
gain holds meaning and is “interesting” to the observer.

For example, imagine that the system is a noisy TV pro-
ducing uniform random noise (Burda et al., 2018). A noisy
TV is learnable, allowing the observer to learn a statistical
model that approximates the uniform distribution increas-
ingly well; however, once the observer’s model converges
to uniform the system loses its novelty: all that is left is
aleatoric uncertainty, which is collapsed by the expectation.
Now imagine that the system is a noisy TV switched period-
ically by a remote control to a random, arbitrary distribution.
Every time the channel is changed, the observer may expe-
rience novelty; however, the system is now not learnable,
because the history of artifacts (previous TV channels) are
not correlated with the distribution of the next channel, so
the model loss will not decrease in general. We provide an
informal positive example in Appendix A.1.

Our definition makes no explicit mention of “interesting-
ness”. More precisely, interestingness is represented in our
definition by the observer’s choice of loss function ℓ. Thus,
for us, the interesting parts of artifacts are precisely those
features which the observer decides are useful to learn about.
Different observers can, and do, find different artifacts inter-
esting, by virtue of the different parts of the feature space
they choose to learn with their statistical model.

We hope that our definition will serve as a useful grounding
for future work. On the theoretical side, it provides a basis

1We take the expectation over any stochasticity in the artefacts;
practically speaking, were the observer to make observations from
identical copies of the system S, the expectation of ℓ would be
approximated by the empirical mean.

for proving whether a system is open-ended. On a practi-
cal note, it raises the prospect of searching for open-ended
systems. In this paper, we shall use it to underpin the argu-
ment that open-endedness lies on the critical path towards
ASI, and in particular that the combination of open-ended
algorithms and foundation models is ripe to yield significant
progress towards that aim. We examine some subtleties of
our definition in Appendix A.2.

2.2. Related Definitions

In the interests of space, we review the definitions of open-
endedness most closely related to ours, covering more dis-
tantly related work in Appendix C. Soros and Stanley (2014)
provided four necessary conditions for an evolutionary pro-
cess to be open-ended, namely (1) that individuals must
meet a minimal criterion in order to reproduce, (2) that
evolution of individuals should create novel opportunities
to meet the minimal criterion, (3) that individuals them-
selves should make decisions about how to interact with the
world, and (4) that the potential complexity of the phenotype
should not be limited by its representation. Our definition
overlaps with these necessary conditions, but relaxes the
constraint that the open-ended system is evolutionary. Our
requirement that learnability is increasing can be seen as
a generalisation of the minimal criterion in condition (1).
Our requirement that the observer cannot intervene on the
system is analogous to condition (3). Our requirement that
novelty is increasing is analogous to conditions (2) and (4).
Indeed, conditions (2) and (4) suggest that an open-ended
system cannot be learned from a fixed data distribution.

To our knowledge, the most recent paper offering a defini-
tion of open-endedness is Sigaud et al. (2023). The authors
write: “an observer considers a process as open-ended if, for
any time t, there exists a time t′ > t at which the process
generates a token that is new according to this observer’s
perspective”. This definition has considerable overlap with
ours. Like us, Sigaud et al. define open-endedness with re-
spect to an observer. They consider the observer examining
a sequence of tokens from a process, while we equivalently
have the observer consider a sequence of artifacts from a
system. Our requirement of novelty and learnability is com-
patible with their statement that the process should generate
a token that is “new according to the observer’s perspec-
tive”. Our definition differs by being more precise about
what this phrase means. In particular, we specify that what
an observer considers “new” should be artifacts that are
unpredictable according to their current statistical model of
the system under consideration. Moreover, we specify that
the observer’s “perspective” is generated by learning that
statistical model on the history of artifacts thus far presented
by the system. In particular, our definition can rule out
systems that display continual “novelty” but are otherwise
uninteresting, like white noise on a TV screen, for instance.
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2.3. Types of Observer

The choice of observer is a free parameter of great impor-
tance for our definition. From the perspective of AI research,
there is a pre-eminent class of observers, namely humans.
In other words, we wish to generate artifacts that are valu-
able to individual humans and to society. This provides a
level of grounding for the open-ended system which nar-
rows the search space considerably, as we shall argue in
Section 3. Nevertheless, our definition deliberately admits
arbitrary observers, for several reasons. Firstly, it allows our
definition to encompass open-ended systems which are not
anthropocentric, such as biological evolution. Secondly, it
allows us to reason about open-ended systems which might
exceed human capabilities, so-called ASI. Thirdly, it allows
us to determine whether systems can be open-ended with
respect to any observer, as we did with the noisy TV.2

Practically speaking, any given observer will have some
time horizon τ which bounds their observations of a system,
i.e. t, T < τ . This concept allows us to distinguish between
systems which are open-ended on different timescales. We
say that a system is infinitely open-ended with respect to
an observer O if it remains open-ended on any timescale
τ → ∞. We say that a system is finitely open-ended with
time horizon τ with respect to an observer O if it is open-
ended for t, T < τ . Consider, for example, an agent trained
in simulation with an automatic curriculum over tasks. In
principle, a human observer might find observations of the
agent behaviour to be infinitely open-ended, for the agent
may accrue the ability to solve ever more diverse and sur-
prising tasks. In practice (cf. AdA, Bauer et al., 2023),
novelty starts to plateau after about 1 month of training, due
to limitations in the richness of the task space and in the
size of the agent’s neural network. Thus AdA is finitely
open-ended with time horizon ≈ 1 month.

Similarly, an observer’s judgement will be influenced by
the limitations of their cognitive abilities relative to the
breadth of the domain. For example, a human observer who
reads a curriculum of ever more complex articles from a
current snapshot of Wikipedia may find such a system open-
ended, but only until they reach the limit of their memory.
A suitable ordering of Wikipedia articles will present novel
information, in the sense that every now and then an article
will be more unpredictable than we have hitherto seen. We
might also expect that this information will be learnable,
because human knowledge is interlinked, in the sense that
knowing more about one topic makes it easier to understand

2There is one constraint on an observer which must be adhered
to for our definition to make sense. The loss function must treat
artifacts X and predictions X̂ on an equal footing. In particular it
must be fixed in advance without any knowledge of the system S.
Otherwise, an observer O could find a system S to be open-ended
purely by discarding the artifacts from S and constructing its own
artifacts that it finds to be both novel and learnable.

other topics that may crop up later. However, once human
memory capacity is saturated, the human observer will start
to forget previous articles. This violates learnability: in
calculus, for instance, once one has forgotten the definition
of a derivative, one will find it harder to understand an article
about the chain rule. Therefore, conditioning on a history
longer than an observer’s recall doesn’t necessarily make
the current artifact more predictable.

This example brings to light three interesting threads. Firstly,
the open-endedness of human technology, as observed by
humans, relies on our ability to compress knowledge into
a form that can be maintained within our collective mem-
ory: indeed, we present an alternative definition of open-
endedness in the language of compression in Appendix B.
Secondly, an artificial superhuman intelligence may have
less stringent memory constraints than humans, and there-
fore may judge itself to be open-ended beyond the point at
which humans assess it to be so, re-emphasising that human
observers must be considered pre-eminent for the purposes
of safety, as we explore further in Section 4. Thirdly, the
open-endedness in this example is a function of the breadth
of the domain. In a narrower domain, elliptic curve cryp-
tography say, the set of relevant Wikipedia articles would
be much smaller, so a human observer would find this open-
ended only until they had understood every article, at which
point novelty would be violated. Nevertheless, humans can,
and frequently do, make new discoveries in narrow domains
via experimentation and reasoning; amassing a vast, static
trove of data is not the be all and end all of open-endedness.

2.4. Examples

In this section, we discuss some popular systems that are
open-ended but not general, or that are general but not open-
ended, with respect to a human observer. This serves two
purposes. Firstly, it demonstrates that our definition is not
so restrictive as to rule out systems that are intuitively open-
ended, and is not so loose as to include systems that intu-
itively lack open-endedness. Secondly, it motivates the ben-
efits that foundation models can provide in addressing the
limitations of current open-ended systems and vice versa.

Our first archetypal open-ended system is AlphaGo (Silver
et al., 2016). Consider as artifacts the sequence of policies
produced across training by AlphaGo. After sufficient train-
ing, AlphaGo produces policies which are novel to human
expert players, in the sense that they play moves which
would be low probability for human professionals but which
nevertheless are winning against the best humans. Further-
more, humans can improve their win rate against AlphaGo
by learning from AlphaGo’s behavior (Shin et al., 2023).
Yet, AlphaGo keeps discovering new policies that can beat
even a human who has learned from previous AlphaGo ar-
tifacts. Thus, so far as a human is concerned, AlphaGo is
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both novel and learnable. AlphaGo is just one representative
from a class of open-ended algorithms that augment rein-
forcement learning with self-play (Samuel, 1959), achieving
or exceeding human-level play in Go, Chess, Shogi (Silver
et al., 2017), StarCraft II (Vinyals et al., 2019) Stratego (Per-
olat et al., 2022), DotA (Berner et al., 2019), and Diplomacy
(Bakhtin et al., 2022).

AlphaGo is an example of an open-ended system that
achieves narrow superhuman intelligence (Morris et al.,
2023). This limits its utility: self-play of this kind can-
not by itself help us to discover new science or technology
that requires combining insight from disparate fields, or
taking actions across a range of modalities, timescales and
contexts. The constraints of the game rules make the search
for novel and learnable artifacts tractable, and these artifacts
are found to be novel and learnable by human observers
largely because it was humans who invented the game.

Our second archetypal open-ended system is AdA (Bauer
et al., 2023; OEL Team et al., 2021). AdA is a large-scale
agent that learns to solve tasks in an 3D-environment called
XLand2. In XLand2 there are 25B possible task variants,
corresponding to different world topologies and a variety of
possible games within each world, that are prioritized for
learning potential (Jiang et al., 2021). Checkpoints of the
AdA agent across training are open-ended with respect to a
human observer who attempts to predict what capabilities
the agent might show. Across training, the agent gradu-
ally accumulates zero-shot and few-shot capabilities over
an ever wider set of held-out environments, requiring ever
more complex skills. Thus the human continually observes
novel capabilities in the agent. Furthermore, the prioritiza-
tion of task variants provides an interpretable ordering to the
accumulation of skills in the agent, rendering this learnable
by a human. AdA represents a wider class of open-ended al-
gorithms driven by unsupervised environment design (UED,
Dennis et al., 2020; Justesen et al., 2018), which establish
an automatic curriculum (Leibo et al., 2019; Baker et al.,
2020) of environments in the zone of proximal development
for agent learning (Vygotsky and Cole, 1978).

It is natural to ask whether AdA would continue to be judged
as open-ended by a human observer should training be con-
tinued indefinitely. Results in Bauer et al. (2023) suggest
that novelty starts to plateau, implying that with an order
of magnitude more compute AdA would almost certainly
not be open-ended. Indeed, the authors show that both in-
creasing the size of the agent and increasing the number
of tasks allow the agent to generalize to a wider range of
environments. Thus, in order for this system to be open-
ended on longer timescales, one would need an even richer
environment and an even more capable agent to sustain the
agent-environment co-evolution inherent in UED.

Our third archetypal open-ended system is POET (Wang

et al., 2019; 2020). POET trains a population of agents,
each of which is paired with an environment that is evolving
over the course of training. These paired agent-environment
artifacts are open-ended with respect to a human observer
seeking to model the features of the environments that arise,
or equivalently the skills the paired agents possess. A Qual-
ity Diversity algorithm (QD, Pugh et al., 2016; Mouret and
Clune, 2015) is deployed with respect to the environments,
hunting for challenging problems that lead to diverging per-
formance across the population. QD is an example of a
wider class of open-ended algorithms, namely evolutionary
algorithms, which we encounter again in Section 3.4.

Crucially, POET periodically transfers agents from one en-
vironment to another, which results in an empirical example
of the stepping stone phenomenon (Stanley and Lehman,
2015): agents can eventually solve incredibly challenging
environments that are not possible to solve with direct opti-
mization. As a result of training for billions of environment
steps, POET produces a diverse population of highly capa-
ble specialist agents, which can solve novel environments
that are created through coevolution with the population
(Brant and Stanley, 2017). Novelty arises because of the
mutation operator in the QD algorithm, which yields new
and unpredictable environments. Learnability arises because
each mutation is small, so the past lineage of an environ-
ment is a good guide to its current features. Just as for AdA,
the key limitation on open-endedness is the environment
parameterization itself: eventually POET will plateau once
the agent can solve all possible terrains.

Our final example is contemporary foundation models.
These are a negative example; they are not open-ended by
our definition with respect to any observer who can model
their training dataset. The justification for this follows im-
mediately from our consideration of the noisy TV in Section
2.1. Contemporary foundation models are typically trained
on fixed datasets. If the distribution of this data is learnable,
which it must be, for the foundation model learned it in
the first place, then it cannot be endlessly novel, because
eventually the observer will have modelled the epistemic
uncertainty. As we saw in Section 2.3, foundation models
may appear open-ended to human observers if the domain of
enquiry is sufficiently broad, by virtue of the memory limita-
tions of the human brain. However, if the focus is narrowed,
for instance to tasks that require planning (Momennejad
et al., 2024; Pallagani et al., 2023; Valmeekam et al., 2023),
the limitations of the foundation model in generating novel,
correct solutions are exposed.

Since foundation models are periodically retrained on new
data, including data generated by their own interactions
with humans and the real world, one could argue that the
data distribution is not really fixed. In some quarters, this
kind of distributional shift is seen as an annoyance, even
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one which threatens “model collapse” (Shumailov et al.,
2023). We flip this argument on its head, and contend
that augmenting foundation models with open-endedness
offers a path towards ASI. Similarly, the fact that foundation
models are typically conditional on context breaks the logic
that they cannot be open-ended. In principle, the context of a
foundation model can be recruited to recombine concepts in
an open-ended way by leveraging some external measure of
validity. This brings us neatly to some concrete suggestions
for how to build open-ended foundation models.

3. Open-Ended Foundation Models
We have defined open-endedness and discussed why the
current foundation model training paradigm is not open-
ended. We believe that the trend of improving foundation
models trained on passive data by scaling alone will soon
plateau, and it will not be enough to reach ASI. Our position
is that open-endedness is a property of any ASI, and that
foundation models provide the missing ingredient required
for domain-general open-endedness. Further, we believe
that there may be only a few remaining steps required to
achieve open-endedness with foundation models. In the
following subsections, we sketch four overlapping paths
towards open-ended foundation models that lend credence to
this belief. The paths are neither intended to be prescriptive
nor exhaustive. Indeed, recent publications such as (Wong
et al., 2023b; Sharma et al., 2023) point to other paths.

Before proceeding, we must justify our claim that a future
foundation model trained passively on some large corpus
of human data is unlikely to spontaneously acquire open-
endedness. In principle, should we reach ASI, there will
be some sum total of data which the model has consumed
during its training, possibly via several intermediate stages.
Therefore, our claim is not about the impossibility of assem-
bling such a dataset. Rather, we suggest that it is unlikely
that this dataset can be pre-collected offline in an efficient
way. The reason is that open-endedness is fundamentally an
experiential process: producing novelty and learnability in
the eyes of an observer requires continual online adaptation
on the basis of the artifacts already produced, in the context
of that observer’s evolving prior beliefs.

What would it take to collect offline a static dataset from
which such an experiential skill could be learned? Such
a dataset must contain a treasure trove of artifacts which
themselves crisply show novelty and learnability. Yet the
process by which culture evolves, ideas develop, inventions
arise and technologies proliferate is seldom recorded neatly
and comprehensively. The alternative paradigm, in which
experience is “built in” to the open-ended system, is well il-
lustrated by the scientific method. Since the Enlightenment,
the simple process of making hypotheses on the basis of
current knowledge, falsifying them with experiments based

on a source of evidence, and codifying the results into new
knowledge has yielded unprecedented progress in science
and technology (Deutsch, 2011). In our view, the fastest
path to ASI will take inspiration from the scientific method,
compiling a dataset online by the explicit combination of
foundation models and open-ended algorithms.

3.1. Reinforcement Learning

The framework of Reinforcement Learning (RL) has been at
the forefront of achieving superhuman performance in nar-
row domains, such as AlphaGo’s groundbreaking strategies
that have enriched the human understanding of the game of
Go. RL agents act deliberately so as to shape their stream of
experience for both accumulating reward (exploitation) and
learning about how to increase expected reward in the future
(exploration). A nuanced extension are agents that set their
own goals to (learn to) pursue; and generating the sequence
of these goals can itself be an open-ended process, which
drives open-ended experience generation (Colas et al., 2022).
Voyager (Wang et al., 2023a) provides an early example of
how RL-like self-improvement can be built on top of founda-
tion models, without the need for explicit parameter updates
or established RL algorithms. Instead, Voyager assembles
an LLM-powered curriculum, uses iterative prompting as
an improvement operator, and assembles verified skills into
a library for hierarchical reuse.

A key problem in RL is how to shape exploration towards
novel and learnable behaviors in high-dimensional domains,
as discussed in Jiang et al. (2022). Exploration can be
guided, for instance, by pseudo-rewards (Bellemare et al.,
2016; Burda et al., 2018; Du et al., 2023b), modulation
(Schaul et al., 2019) or an automated curriculum that selects
relevant tasks (Jiang et al., 2021; Parker-Holder et al., 2022;
Samvelyan et al., 2023). To generalize this, a useful abstrac-
tion may be the notion of a proxy observer, which sits within
the system and proactively guides it to generate novel and
learnable content for the true external observer. In the past
this guidance was provided on the basis of simple metrics
such as TD-error, but now we can leverage foundation mod-
els to guide exploration towards artifacts that more closely
align with what a human observer deems to be novel and
interesting (Jiang et al., 2022). There is already evidence
that this approach may be effective, with LLMs providing
agent rewards from text in an environment (Klissarov et al.,
2023) and compiling a curriculum of tasks based on their
interestingness (Zhang et al., 2023; Faldor et al., 2024).

While RL considers the first-person perspective of an agent
interacting with an environment, a different perspective cen-
ters on multi-agent dynamics, and the additional richness
arising from all the ways that different (possibly heteroge-
neous) agents can interact with each other, adapt to each
other, or learn from each other. The presence of multiple
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learning agents provides a source of non-stationarity, such
that the optimal strategy for each individual will change over
time, potentially in an open-ended manner. Non-stationary
dynamics been used to achieve or exceed human-level per-
formance in games like StarCraft, DotA and Stratego. There
is early evidence that multi-agent systems may help to im-
prove factuality and reasoning in LLMs via debate (Du et al.,
2023c; Tang et al., 2023), although there is much more re-
search needed before superhuman capability is reached.

3.2. Self-Improvement

To achieve open-endedness, a model must not only con-
sume knowledge from pre-collected feedback as in, for
example, RLHF (Ziegler et al., 2019), but also generate
new knowledge, in form of hypotheses, insights or creative
outputs beyond the human curated training data. A self-
improvement loop should allow the agent to actively engage
in tasks that push the boundary of its knowledge and ca-
pabilities, for example via leveraging tools such as search
engines, simulated environments, calculators or interpreters
and interacting with other agents (Jiang et al., 2022; Schick
et al., 2024). This requires the model to have a scalable
mechanism to evaluate its own performance, identify areas
for improvement, and adapt its learning process accordingly.

There is growing evidence that foundation models can be
leveraged for feedback in place of humans, and can signifi-
cantly amplify data generated by humans. Examples include
self-critique and revision for training harmless assistants
(Bai et al., 2022) and guiding human evaluators (Saunders
et al., 2022), self-correction for tool-use (Gou et al., 2023),
self-instruction for instruction following (Wang et al., 2022),
self-debugging for code generation (Chen et al., 2023b), self-
rewarding for instruction following (Yuan et al., 2024), and
leveraging VLMs as reward functions for control (Baumli
et al., 2023). These works hint at the possibility of founda-
tion models generating their own samples and refining them
in an open-ended way.

3.3. Task Generation

Closely related to both RL and self-improvement is the prob-
lem of task generation, also known as the “problem problem”
(Leibo et al., 2019). One great candidate approach for open-
endedness is to keep adapting the difficulty of tasks to an
agent’s capability so that they remain forever challenging
yet learnable. Past examples of this type of system include
setter-solvers (Schmidhuber, 1991b) and unsupervised envi-
ronment design (Dennis et al., 2020; Justesen et al., 2018;
Wang et al., 2019). With the advent of foundation models,
it has become feasible to use the Internet itself as an envi-
ronment (Jiang et al., 2022; Gur et al., 2021) via web-based
APIs, affording agents with an incredibly rich, ever-growing
and human-relevant task domain (Zhou et al., 2023).

Another possibility is to instead learn world models—
predictive simulators that can generate future outputs condi-
tioned on text or actions. A promising approach is to con-
sider a foundation model to be a world model itself, since
it is capable of predicting the future (Wong et al., 2023a;
Gurnee and Tegmark, 2023; Park et al., 2023). Learned
world models like Genie (Bruce et al., 2024), and text-to-
video generation models like Sora (Brooks et al., 2024)
demonstrate that foundation video models can be used as
learned simulators, including in real-world settings like
robotics (Yang et al., 2023b) and autonomous driving (Hu
et al., 2023). If these works combine with learned multi-
modal reward models (Chan et al., 2023; Du et al., 2023a),
they could be used to generate an open-ended curriculum of
tasks, scaling to task spaces far larger and more photorealis-
tic than can currently be achieved. At sufficient scale, this
may provide a path to generating AI agents with superhu-
man adaptability across a wide range of previously unseen
tasks, which can be deployed in the real world across the
rapidly closing Sim-to-Real gap (Huang et al., 2023).

3.4. Evolutionary Algorithms

Evolutionary methods offer a promising path to generate
open-ended systems with foundation models (Wu et al.,
2024). LLMs are well-placed to act as selection and muta-
tion operators, as they have been trained on vast datasets of
human knowledge, culture and preferences. For example,
LLMs offer a mechanism through which to make semanti-
cally meaningful mutations via text (Lehman et al., 2022;
Meyerson et al., 2023; Chen et al., 2023a). The simplest
such approach may be via prompts, which already allow
foundation models to further improve their performance.
Recent works have shown it is possible to far surpass human
designed prompts, leading to stronger models (Fernando
et al., 2023; Yang et al., 2023a; Guo et al., 2023). More
recently, Bradley et al. (2023) and Samvelyan et al. (2024)
went further, using an evolutionary algorithm and LLMs to
both generate variation and evaluate the quality and diversity
of candidate text, making it possible to guide the search for
creative and novel outputs. In the future it may be possible
to further refine a model on these outputs, or use them for
planning (Gandhi et al., 2023), to achieve self-improvement.

Another angle of attack for evolutionary methods is in the
space of code (also known as genetic programming). Foun-
dation models have proven to be competent at producing
diverse and novel programs, providing a means of iterat-
ing upon an archive of candidate solutions. For example,
Eureka (Ma et al., 2023) evolves code-based reward func-
tions to learn complex control behaviors. Similarly, Fun-
Search (Romera-Paredes et al., 2024) evolves programs that
represent new mathematical knowledge. These examples
are focused on specific domains, and it remains an open
problem to scale code evolution to a more general setting.
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4. Achieving ASI Responsibly
Now that we have foundation models, designing a truly gen-
eral open-ended learning system may be within our grasp.
However, the power of open-endedness comes with a swathe
of notable safety risks—beyond existing safety considera-
tions facing foundation models (Ecoffet et al., 2020). Find-
ing solutions to these challenges are interesting and impor-
tant core problems in open-endedness research. Because
the solutions to these problems may well depend on the
design of the open-ended system, it is critical that safety
and open-endedness are pursued in tandem. We cover them
here not to hold them separate from other directions in
open-endedness—in fact many of these problems are cur-
rent practical limitations of artificial open-ended systems.
Rather, this section is intended to draw specific attention
to these problems as some of the most fundamental and
exciting directions for research in the field. Of course, this
short section cannot do justice to the breadth of concerns.
Hence, where possible, we provide references to the wealth
of knowledge in the ASI safety community.

We organize our understanding of these risks similar to
(Critch and Krueger, 2020) by focusing on the ways knowl-
edge is created and transmitted through the joint human-AI
open-ended process in Figure 2. A powerful open-ended
system which has the problems listed in this section is not a
beneficial open-ended system, and we believe it is not one
we should be striving to build. Solving these problems is
not just making open-ended systems safer, but also making
them usable by humans. As such, addressing these prob-
lems should be thought of as minimum specifications of an
open-ended system that we would want to build.

4.1. AI Creation and Agency

AI systems powering the open-ended creation of new knowl-
edge could lead to powerful new affordances. Without di-
rection, these creations could be the source of dual-use
dangers (Urbina et al., 2022). The danger is magnified when
the open-ended systems take immediate action in an envi-
ronment. Current state-of-the-art systems operate in narrow,
simulated environments (Wang et al., 2023a; OEL Team
et al., 2021; Bauer et al., 2023). However, as AI is trained in
broader, more diverse simulations or is even deployed (and
continues to learn) in the real world, it becomes critical to
understand the dangers. The agency of open-ended AI poses
several safety risks, such as goal misgeneralization (di Lan-
gosco et al., 2022; Shah et al., 2022) and specification gam-
ing (Clark and Amodei, 2016). Open-ended search can be
seen as an ambitiously aggressive form of exploration; thus
one could hope to use similar approaches to mitigate the dan-
gers of exploration as in RL, like safe exploration (Garcıa
and Fernández, 2015) and impact regularization (Krakovna
et al., 2018; Turner et al., 2020).

Figure 2. Knowledge accumulation and transfer in a human-AI
open-ended system. We depict AI building on AI knowledge,
humans understanding AI knowledge, AI understanding human
knowledge, humans building on human knowledge, and emergent
knowledge created by the process as a whole. Every process in
this diagram offers an opportunity to embed safety methods that
guide the system towards achieving ASI responsibly.

4.2. Humans Understanding AI Creations

In order to provide informed oversight and direction when
guiding an open-ended system, human observers need to
at least partially understand the significance of the new
artifacts that the system produces. This becomes increas-
ingly challenging as the complexity of these artifacts grows,
leading to the inability to give informed oversight and guid-
ance. Such a system may not only be unsafe, but would no
longer be open-ended for human observers, since it would
no longer be learnable. As such, any open-ended system
we want to build should have the ability to bring human ob-
servers along with it—understanding and interpreting these
systems is not only a core problem to make them safe, it is
also a core problem to make them useful.

One approach would be to try to understand the policy gen-
erated by open-ended systems through interpretability. With
current approaches this would require a formidable inter-
pretability effort for each domain of interest. However,
with the advent of automated interpretability (Bills et al.,
2023), one may hope to build increasingly good explana-
tions of the systems’ behaviors which match the increasing
complexity of the open-ended system. This presents an
sizeable challenge, as such a system would be a universal
explainer (Deutsch, 2011), by definition.

An alternative approach is to prefer designs for open-ended
systems which promote interpretability and explainability,
or whose goal is to teach human observers. Already, there
are efforts to train systems which directly inform the user of
implicit knowledge (Christiano et al., 2021). One might aim
to design systems that at least maintain informed oversight
(Amodei et al., 2016; Bowman et al., 2022). This approach
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may be especially effective if the design of the open-ended
system automatically facilitates understanding and control
by human users (Irving et al., 2018).

4.3. Humans Guiding AI Creation

Even if we assume that human observers can understand
enough of the behavior of an open-ended system to be in a
position to give informed feedback, we arrive at the question
of how a human designer could meaningfully guide an open-
ended system. This challenge goes beyond the difficulties of
directing individual RL agents, as not only do open-ended
systems often lack well-defined objectives that could be
modified, but they are increasingly unpredictable by design.
One possibility would be to use humans in the loop to drive
open-endedness (Secretan et al., 2008), a kind of open-
endedness from human feedback (Zhang et al., 2023). A
complete solution to this problem not only needs to be
directable, but must actively raise unexpected and possibly
important artifacts to the user’s attention.

If open-ended systems could be made as directable as in-
dividual RL agents, then work defining objectives which
preserve controllability (Hadfield-Menell et al., 2016; 2017;
Carey and Everitt, 2023) might be a promising path towards
more controllable open-ended systems. However, direct-
ing an open-ended system towards any objective effectively
while maintaining the open-endedness is an open problem.
This problem is not only important for safety, but is impor-
tant for open-ended systems to be useful. In sufficiently
broad domains—such as all of mathematics, all proteins, or
all behaviors on a computer—an open-ended system may
rabbit-hole into the obscure theorems, useless proteins, or
only certain computer applications. Thus, building mech-
anisms that allow us to direct open-ended systems to not
just the safe artifacts, but the interesting and useful artifacts,
is a fruitful avenue for collaboration between safety and
open-endedness researchers.

4.4. Human Society Adapting

There are significant non-technical concerns in ensuring that
society can understand, prepare for, and appropriately react
to new technological capabilities emerging from open-ended
foundation models. Indeed, the impact of AI systems is not
just felt at the individual level, but also at the level of the
collectives that structure our society—communities, organ-
isations, markets and nation states, to name a few. Since
the artifacts arising from open-ended foundation models
will by definition appear novel, we must devote prospective
attention to the ways in which these could harm or benefit
the cooperative infrastructure of society (Dafoe et al., 2020).
Likewise, we must develop mechanisms to avoid tipping
points driven by feedback loops, like flash crashes (Aldrich
et al., 2017). Decision-makers should be prepared to adapt

governance rapidly and retrospectively in response to open-
ended artifacts, finding a good balance between collecting
information and avoiding entrenchment of undesirable arti-
facts (Collingridge, 1980).

4.5. Emergent Risks of Open-Ended Systems

Even if each subcomponent of Figure 2 can be made safe,
it may still be the case that the aggregate joint human-AI
open-ended system leads to unforeseen problems. For in-
stance, two systems that are open-ended in isolation could
negatively interact to cause neither to be open-ended. This
would mean a cessation of progress and an inability to col-
lectively respond to new challenges. While such emergent
effects have been studied in multi-agent systems (Johanson
et al., 2022) and ASI safety (Critch and Krueger, 2020) solu-
tions are still elusive, and an understanding of these effects
is critical to the safe deployment of open-ended systems.

If such problems are inevitable and unpredictable, we would
need our human-AI open-ended systems to adapt to solve
novel ASI safety failures as they arise. Due to the in-
herent unpredictability of knowledge creation, these prob-
lems may be both unavoidable and solvable once as they
arise (Deutsch, 2011). We should be building an open-ended
system whose safety is anti-fragile (Taleb, 2014), adapting
to emerging safety risks and getting stronger for it. This
entails designing techniques for understanding, monitoring,
and rapidly coordinating responses to emerging risks.

5. Conclusion and Outlook
Foundation models have led to a rapid increase in the gen-
erality of current AI systems. However, current foundation
models are limited in their capability to discover new knowl-
edge. In this paper, our position is that to further advance
in levels of AGI towards ASI, we require systems that are
open-ended—endowed with the ability to generate novel
and learnable artifacts for a human observer. There has
never been a more exciting time to build such systems, with
foundation models already exhibiting general human-like
knowledge that both accelerates further learning and guides
this learning towards human-relevant artifacts.

As we develop and deploy more generally-capable open-
ended systems, novel safety concerns arise that will be criti-
cal to address. In order to realise the benefits of such sys-
tems, it is important that the human observer remains able
to learn from the novel artifacts, bringing fields such as ex-
plainability to the forefront of open-endedness research. If
these endeavors are successful, then we believe open-ended
foundation models could lead to advances that drastically
enhance modern society.
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Impact Statement
Our work provides a formal definition of open-endedness,
and provides a discussion on its significance for the pursuit
of ASI. We explore current research directions in the field,
emphasising the potential of combining open-endedness
with foundation models as a pre-eminent path towards
achieving ASI. Developed responsibly, we believe that such
open-ended foundation models can have tremendous posi-
tive impact on the society, accelerating scientific and techno-
logical breakthroughs, enhancing human creativity through
a collaborative feedback loop, and acting as an engine for
general knowledge expansion across many fields. Recognis-
ing the profound implications of this concept, we dedicate
the entirety of Section 4 to an initial analysis of potential
risks and societal impacts, offering frameworks for the re-
sponsible and ethical development of ASI. We hope that
highlighting these issues early will help to promote safety,
responsibility and accountability as the field grows.

Acknowledgements
We gratefully acknowledge Dave Abel for providing valu-
able feedback on an early draft of this paper. We are thankful
to the designers at the Noun Project, from which we sourced
graphics under the CC BY 3.0 licence as follows: “tick”
icon by kareemovic, “Delete” icon by kareemovic, “alien”
icon by Artem Yurov, “girl” icon by Teewara soontorn, “year
of rat” icon by DailyPM, “aircraft” icon by mikicon, “con-
corde” icon by mikicon, “Plane” icon by CAMB, “humans”
icon by Ifanicon, and “Robot” icon by Deemak Daksina.

References
D. Abel, A. Barreto, B. Van Roy, D. Precup, H. van Hasselt,

and S. Singh. A definition of continual reinforcement
learning. ArXiv preprint, abs/2307.11046, 2023. URL
https://arxiv.org/abs/2307.11046.

M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes,
B. David, C. Finn, C. Fu, K. Gopalakrishnan, K. Haus-
man, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth,
N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-
H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor,
J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Ser-
manet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke,
F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng. Do
As I Can, Not As I Say: Grounding Language in Robotic
Affordances, Aug. 2022.

E. M. Aldrich, J. Grundfest, and G. Laughlin. The flash
crash: A new deconstruction. Available at SSRN 2721922,
2017.

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schul-
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Level Replay, June 2021.
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A. Illustrating Open-Endedness
A.1. An Informal Example

To illustrate our definition informally, we provide a relatable
real-world example. Let S be a research lab and the xt be
academic papers published by the lab. A natural choice of
observer O is a research student in the field at a different
lab. Roughly speaking, a research student sees novelty in a
line of work if, based on their knowledge of the literature up
to time t, given any subsequent paper xT they can always
find a later paper xT ′ that is more surprising than xT . This
is intuitively sensible, a putative student with knowledge of
Newtonian mechanics will find Maxwell’s equations hard
to predict, quantum mechanics even more surprising, and
contemporary particle physics very far outside their current
level of comprehension. A research student sees learnability
in a line of work if they find that reading the previous papers
helps them better to predict the contents of the current paper.
Again, this appeals to our intuition: part of the purpose of
citations, for instance, is to point new researchers at previous
works that will help to deepen their understanding of the
current work.

Our interpretation of “interestingness” as learnability also
makes sense from the perspective of a research student. A
research student may choose to ignore a paper’s choice of
font, but will likely pay close attention to the details of a
novel method that yields state-of-the-art results. Thus the
student finds interesting the parts of the paper from which
they can learn the most. Similarly, the requirement that
the loss metric ℓ be chosen without knowledge of S finds a
natural interpretation here. A research student cannot judge
the open-endedness of a stack of papers by choosing to
never read the papers and instead inventing their own line
of research with no reference to previous works.

A.2. Definitional Subtleties

Self-play illustrates some subtleties in our definition. The
first subtlety is the dependence of open-endedness on the
choice of observer. Suppose that O is an oracle who knows
the Nash strategy to play in Go. Assuming that the oracle
is modelling the win-rate of AlphaZero’s artifacts against
its own policy, it will never find any AlphaZero policy to
be novel. Therefore the oracle does not find AlphaZero to
be open-ended. The second subtlety is the dependence of
open-endedness on the learning limitations of the observer.
To an average human Go player, as opposed to an expert,
AlphaZero becomes novel earlier in training, and at some
point ceases to be learnable, because the average player
cannot figure out how to improve their own play with ref-
erence to very unusual style of a superhuman policy. Thus,
open-ended systems only remain open-ended while they
can “educate” their observers. We posit that superhuman
intelligence will be interesting to humans only as far as
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humans can learn to understand it. The third subtlety is
that open-ended systems need not explore a problem space
fully to qualify as open-ended. Recently, adversarial search
was shown to yield policies that beat reimplementations
of AlphaZero and which are so simple that even amateur
humans can learn them (Wang et al., 2023b). Novelty and
learnability give no guarantee of coverage.

Because our definition is based on the perspective of an
external observer, one could worry that this makes it impos-
sible to make any sort of objective claims about the open-
endedness of any particular system, in harmony with the
arguments of Stanley and Soros (2016); Stepney and Hick-
inbotham (2023). There are two factors which mitigate this
concern. Firstly, the definition of open-endedness becomes
objective given any fixed observer, and so it becomes a mea-
surable claim, in the sense that theorems can be written and
experiments conducted. For instance, if we care about open-
endedness with respect to humans, open-endedness can be
measured experimentally by how well humans can predict
the system. By having observer-dependence explicit in our
definition, we make precise the intuition that different ob-
servers, with different prior knowledge, different cognitive
capabilities and different timescales, are likely to judge the
same system in different ways. Thus our definition grace-
fully encompasses the diversity in perspectives of human
individuals and groups (such as companies or governments),
as well as the possibility that AI systems themselves could
be observers.

Secondly, while our definition of open-endedness depends
on an external observer, it is an open question as to whether
all “reasonable” observers would judge the same systems to
be open-ended. Since our definition rests on a notion of pre-
dictability with respect to the observer, our definition will
be as subjective as the underlying notion of predictability.
One may believe that predictability can be accurately and
objectively modeled as Solomonoff induction (Solomonoff,
1960). Thus if reasonable observers are taken to be those
whose predictions eventually follow something approximat-
ing Solomonoff induction, then any observer in this class
would eventually agree on which systems are open-ended.

Practically speaking, there are various existing methods in
the literature which can immediately be adapted to assess
the open-endedness of a system. First, one might elicit direct
human feedback on learnability and novelty of artifacts, in
the same spirit as RLHF (Ouyang et al., 2022) or PicBreeder
(Secretan et al., 2008). Second, one can use large language
models themselves as judges of novelty and learnability, as
argued for in OMNI (Zhang et al., 2023). Finally, one could
explicitly learn a model of the artifacts with an online learn-
ing method like Follow-the-Regularized-Leader (Hazan and
Kale, 2010).

Can an open-ended system be its own observer? In prin-

ciple, there is nothing in our definition that rules out self-
observing open-ended systems. For example, an individual
self-improving agent could generate a series of artifacts,
each one of which is novel (surprising compared to the pre-
vious artifacts) and learnable (increasingly predictable given
the more history of the past artifacts). When the feedback
from self-observation is used to improve the system itself,
we call the observer a proxy observer for it no longer sits
outside the system.

For example, AlphaGo can be seen as an example of a self-
observing system, in that the agent trains in self-play i.e. it
observes its own policy as an opponent, is challenged by
the novel discoveries of search, and learns from them to im-
prove the policy. Likewise, humans can experience “Eureka
moments”, when an individual suddenly reconceptualizes
a problem in a ways that yields a solution (Sternberg and
Davidson, 1995). A series of Eureka moments, each build-
ing on the last, is a self-observing open-ended system: the
human generates discoveries which are novel to themselves,
but which are also predictive of the next discovery.

Our notions of learnability is rather strict, in that it requires
that the loss be decreasing for all t′ > t. A weaker and more
practical notion of learnability might state that it should
be probabilistically unlikely that the loss will increase as a
function of t:

∀T, ∀t < T,∀T > t′ > t : P (ℓ(t′, T ) ≥ ℓ(t, T )) < δ .

It would be interesting to compare the consequences of
δ being a constant with the situation in which δ has some
appropriate dependence on the variables (t, t′, T ). Similarly,
one could weaken the notion of novelty to state that it should
be probabilistically unlikely that the loss will decrease as a
function of T . We believe that there may be several related
and differently useful variants on our definition that would
be interesting to independently study, in a similar way that
there are many notions of convergence which are interesting,
related, and differently useful.

B. Alternative Definition
In Section 2.1 we provided a formal definition of open-
endedness in the language of statistical learning. Here we
give an alternative definition which we conjecture is equiva-
lent under appropriate conditions. The alternative definition
is phrased in the language of compression, a topic with
known formal connections to statistical learning (Hutter,
2004; David et al., 2016; Campi and Garatti, 2023; Delétang
et al., 2023).

A system S produces a sequence of artifacts Xt ∈ X ,
indexed by time t. An observer O processes a new artifact
XT to determine its information content given a history
ht = X1:t of past ones. O possesses a history-dependent
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compression map Cht
: X → {0, 1}∗ which encodes XT

into a binary string of length |Cht(XT )|.

The system displays novelty if the information content in-
creases, namely:

∀t,∀T > t, ∃T ′ > T : |Cht(XT ′)| > |Cht(XT )|.

In other words, the complexity of the artifacts grows, ac-
cording to the observer.

The system is learnable if conditioning on a longer history
increases compressibility, namely:

∀T, ∀t < T,∀T > t′ > t : |Cht′ (XT )| < |Cht(XT )|.

In other words, as its history grows, the observer must be
able to keep extracting additional patterns that help it com-
press future artifacts.

Finally, a system is open-ended from the perspective of O
if and only if it generates sequences of artifacts that are both
novel and learnable.

We allow for the compression map Cht
to be lossy. Hence,

O also possesses a decompression map Dht
: {0, 1}∗ → X ,

a symmetric loss function ℓ : X ×X → R+, and a threshold
ϵ ∈ R+ that upper-bounds the error made by by Cht :

∀T, ∀t < T : ℓ(Dht
(Cht

(XT )), XT ) < ϵ.

We can strengthen the definition to be independent of ϵ by
appealing to rate-distortion theory. A rate-distortion curve
plots the the minimum information content |Ch(X)| such
that ℓ(Dh(Ch(X)), X) < ϵ against ϵ, where the minimum
is over the maps Ch and Dh. The information content is
referred to as the rate and ϵ is referred to as the distortion.
Picture a grid of rate-distortion curves GtT indexed by (dis-
cretized) t and T , as in Figure 3. Remember that T > t,
so GtT is strictly upper triangular, with other entries be-
ing undefined. Then broad novelty is the requirement that
the curves get “fatter” as you move across the columns T
on the grid, for every row t. Similarly, broad learnabil-
ity is the requirement that the curves get “flatter” as you
move down the rows t on the grid, for every column T .
Broad open-endedness is the requirement that both broad
novelty and broad learnability hold. This notion of broad
open-endedness is vague in the same way the notion of
“convergence” is vague in that it can be made precise in
many subtly different but connected ways. For instance,
one could say a system is “uniformly” open-ended if dis-
tortion increases across the rows and decreases down the
columns for every rate ϵ. Alternatively, one could define
“average” open-endedness by requiring that the integral of
the rate-distortion curve get larger as you move across the
columns and smaller as you move down the rows. We hope
that future work will elucidate these subtleties in defining
broad open-endedness and determine which variants have
theoretical or practical merit.

Figure 3. Open-endedness through the lens of rate-distortion
curves. We depict part of the upper triangular matrix of rate-
distortion curves GtT induced an observer after seeing the first t
artifacts aiming to lossily compress future artifact T . Here t =
2, 3, 4 and T = 5, 6, 7. Broad novelty is the property that, as you
move from left to right in any fixed row, the rate-distortion curves
become fatter. Broad learnability is the property that, as you move
from top to bottom in any fixed column, the curves become flatter.
For the system to be broadly open-ended, both properties must
hold.

C. Further Related Work
Open-endedeness as a term emerged from the AI Life com-
munity when trying to quantify and replicate the increasing
complexity and perpetual novelty of biological evolution.
This is a rich field with a significant degree of disagreement
(Earle et al., 2021). As such there are a wide range of met-
rics proposed within the context of evolutionary systems
which aim to quantify it’s behavior. For instance persistence
filtering, which measures how many generations an organ-
ism has persisted for (Dolson et al., 2019), and evolutionary
activity statistics (Bedau et al., 1997; 1998). The closely
related question around the necessary conditions to produce
open-ended evolution has also been deeply studied (Taylor,
2018; 2015). As these definitions are largely specific to bio-
logical evolution, we focus the remainder of our discussion
on the more recent definitions which aim to define open-
ended systems in a way that applies to current ML systems
and systems more broadly.

Our definition of open-endedness is closely related to the
concept of potential surprise in economics (Shackle, 1949).
To measure potential surprise, an individual should ask:
“how surprised would I be if this outcome actually occurred,
if, at the time it occurred, I were still looking at the world in
the way I look at it right now?” (Derbyshire, 2017). Inter-
preting surprise as unpredictability under a statistical model,
an open-ended system S is precisely one which produces
ever increasing “Shackle surprise” in an observer which is
learning. The concept of potential surprise is itself based
on the century-old idea of Knightian uncertainty (Knight,
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1921). Knightian uncertainty is a lack of any quantifiable
knowledge about some possible occurrence, as opposed
to the presence of quantifiable risk. Thus, somewhat im-
precisely, an open-ended system S is one which induces
Knightian uncertainty in an observer who is learning.

In Stanley and Lehman (2015), the authors argue that local
search for novel and interesting artifacts can be advanta-
geous over optimization for a global objective. This is be-
cause stepping stones towards a solution that optimizes the
global objective may well not resemble the solution itself.
Hence it is hard to translate the global objective into a local
improvement operator that reliably accumulates improve-
ments without getting stuck in local optima. To address this
deceptiveness, they suggest that novelty search (Lehman
and Stanley, 2011), guided by a notion of interestingness,
can uncover stepping stones that advance knowledge and
capability. We take inspiration from this blueprint and turn
it into a definition. In order to clarify the notions of nov-
elty and interestingness, we formalize them with respect
to an external observer. Novelty becomes unpredictability
according to the observer’s history-conditional model, and
interestingness becomes learnability of that model across
the history of observations.

Our definition naturally relates to the notion of curiosity. Cu-
riosity, implemented as prediction error of a world model,
has long been mooted as an intrinsic motivation that can lead
to open-ended discovery in RL agents given a sufficiently
rich environment space (Schmidhuber, 1991b; Pathak et al.,
2017; Raileanu and Rocktäschel, 2020; Henaff et al., 2023).
Our definition of novelty is effectively a generalisation of
curiosity, without requiring an overarching RL framework.
Our requirement of learnability ensures that the observer
attempts to capture all the epistemic uncertainty about the ar-
tifacts produced by a system. One challenge is that curiosity
based on novelty alone leads to “stochastic traps”, whereby
an agent will seek out sources of random noise with which
to sate its curiosity (Schmidhuber, 1991a; Burda et al., 2018;
Shyam et al., 2019). In principle, our definition of novelty
collapses such aleatoric uncertainty by taking the expecta-
tion. In practice, we can only estimate the expectation, so it
may be useful to subtract from the loss an estimate of the
aleatoric uncertainty as in Mavor-Parker et al. (2022). We
hope that future work will examine such subtleties required
for an algorithmic implementation of our definition.

The synergies between foundation models and open-
endedness have previously been discussed by Jiang et al.
(2022). The authors propose a general notion of exploration
and detail how open-endedness can be used to solve explo-
ration problems when training foundation models. Our work
follows in this line of thinking, providing a formal definition
of open-endedness to make the discussion precise, and fur-
ther developing the connections between open-endedness

and ASI. A construction of a particular open-ended learn-
ing system is provided in (Jiang et al., 2022), which may
or may not fit our proposed definition of an open-ended
system depending on how it is instantiated. The system
generates Turing machine descriptions of MDPs, explicitly
optimizing for an objective containing terms for learning
potential, diversity, and grounding. These terms have some
high-level relation to our notions of learnability and novelty,
but they are quite distinct in the details. For instance, learn-
ing potential is divided into three sub-critia, improbability,
learnability, and consistency, which are not made entirely
formal. More crucially, the learnability discussed by (Jiang
et al., 2022) is a property of a single MDP, whereas the
learnability we define is a property of a sequence of artifacts.
Similarly, in (Jiang et al., 2022) diversity is defined as a
distance measure between MDPs, whereas novelty, as we
define it, is a property of the learning of the observer with no
necessary relationship to distances in the space of artifacts.
It would be an interesting direction for future research to
understand under what conditions the system described in
(Jiang et al., 2022) would be open-ended by our definition,
and, more generally, whether one can directly optimize for
open-endedness in some circumstances.

Open-endedness is related to, but separate from, the no-
tion of an AI-generating algorithm (AIGA, Clune, 2020).
An AIGA automatically learns how to build a general AI,
based on meta-learning model architectures, meta-learning
learning algorithms, and automatically generating data from
which to learn. Adapting the logic of Clune (2020), an
AIGA need not be open-ended by our definition; if an
AIGA had the objective of passing a Turing test, it need
not produce any further novelty once this objective had
been achieved. Likewise, an open-ended system need not
be an AIGA; as we shall see in Section 2.4, there exist
open-ended systems with narrow scope that match or ex-
ceed human ability without full domain-generality. Our idea
of an Open-Ended Foundation Model in Section 3 lives at
the intersection between open-endedness and AIGAs.

Similarly open-endedness is related to, but distinct from,
continual RL (Abel et al., 2023). A continual RL problem is
one in which the best agents never stop learning. However,
as observed by (Sigaud et al., 2023), this does not neces-
sarily imply that the agent policies accumulate increasing
novelty. Rather, a continual RL agent could cycle among
some set of strategies. In the case where continual RL does
produce policies which are open-ended according to some
observer, this open-endedness will have a scope that is re-
stricted by the environment.
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