Numbers and Units, Current and Voltage

12

Numbers

 In electronics, we sometimes have to deal with very large or very small numbers:

speed of light 300,000,000 m/s

microwave frequency 2,450,000,000 Hz

Numbers

• We use scientific notation:

$$a \times 10^b$$

property	decimal notation	scientific notation
speed of light	300,000,000 m/s	$3 \times 10^8 \text{ m/s}$
microwave frequency	2,450,000,000 Hz	$2.45 \times 10^9 \text{ Hz}$
charge on an electron	0.0000000000000000016 C	1.6×10^{-19} C

There are number of worksheets available in blackboard Learn

14

Units

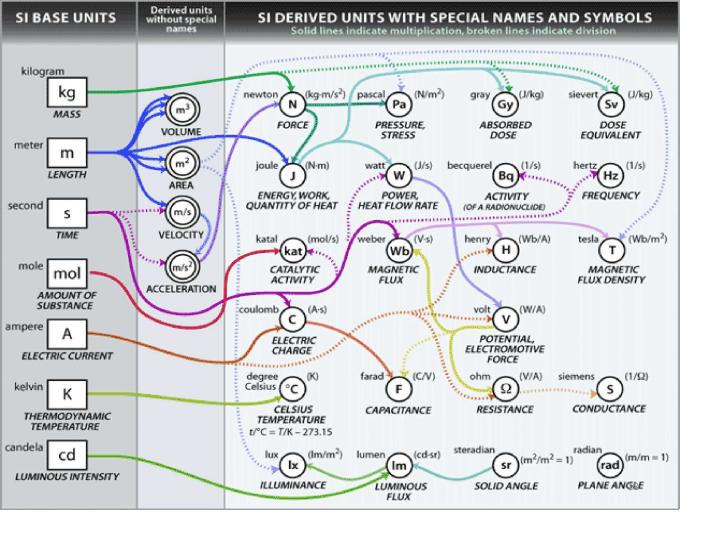
• All measurable quantities have a unit:

400 meters	400 m
6 inches	6''
1 kilogram	1 kg
30 minutes	30 minutes
60 miles/hour	60 mph

• There are many different number systems...

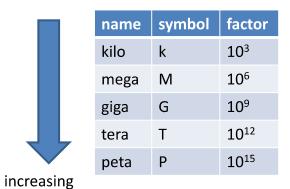
SI Units

- Le Système International d'Unités
 - (International System of Units)
 - **'SI'**
- Adopted in the 1960's


meter, m kilogram, kg second, s

16

Units


• Most units are devised from 7 fundamental units:

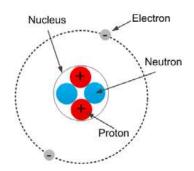
name	unit symbol	quantity
meter	m	length
kilogram	kg	mass
second	s	time
ampere	Α	electric current
kelvin	K	temperature
candela	cd	luminous intensity
mole	mol	amount of substance

SI Prefixes

 The SI convention defines multiplying prefixes to indicate multiple or fractional values of units:

name	symbol	factor
milli	m	10 ⁻³
micro	μ	10 ⁻⁶
nano	n	10 -9
pico	р	10 ⁻¹²
femto	f	10-15

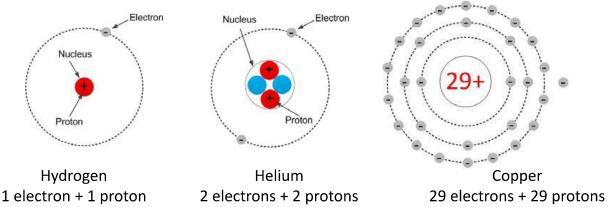
2TB hard drive



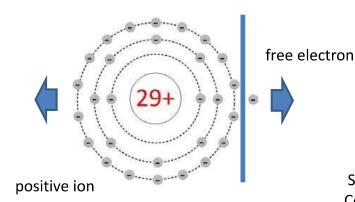
decreasing

Atoms

- The atom is a basic unit of matter:
 - a dense, central nucleus surrounded by a cloud of negatively charged electrons
- The nucleus contains a mix of positively charged protons and electrically neutral neutrons:
 - except for a hydrogen atom which only has one proton


component	charge
proton	positive
electron	negative
neutron	neutral

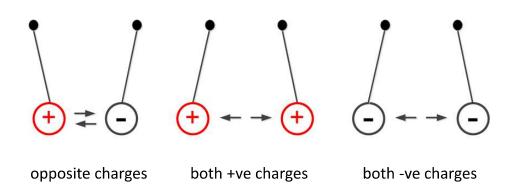
20


Atomic Structure

- The atomic structure of any stable atom has an equal number of electrons and protons
- Each orbiting electron carries a negative charge equal in magnitude to the positive charge of the proton

Electric Charge

- Electric charge is measured in Coulombs, C
- The charge on one electron is 1.6×10^{-19} C
 - usually referred to as e



Charles Augustin Coulomb,
French (1736-1806)
Scientist and inventor who formulated
Coulomb's Law, which defines the force
between two electrical charges

22

Electric Force

- Charges of opposite polarity attract
- Charges of the same polarity repel

Fill in the Blanks

Two atoms walk into a bar:

The first atom "I think I've lost an electron!"
The second atom says "Are you sure?"
The first atom replies "I'm _____!"

A. neutral B. negative C. positive

 A neutron walks into a bar and asks how much for a drink:

The bartender replies, "For you, ____ charge."

A. no B. negative C. positive

24

Voltage

- In a battery, charge is separated into regions of positive and negative charge
- Through chemical action, a concentration of positive charge (ions) is established at the positive terminal, with an equal concentration of negative charge (electrons) at the negative terminal:
 - a voltage is created between the two terminals

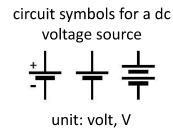
Count Alessandro Volta, Italian (1745-1827) Physicist who developed the world's first capacitor and chemical battery

Voltage – symbols and unit

Symbol	V
Unit	volts
Unit symbol	V

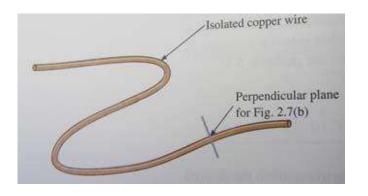
E.g:

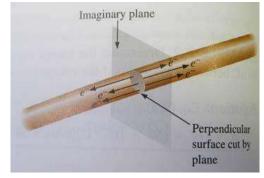
- Voltage of a AA battery of 1.5 volts, or V=1.5V
- Voltage across a bulb 240 volts or V=240V


26

Voltage Source

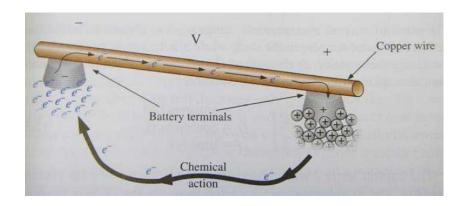
- A dc voltage source is a fixed voltage that can be used to power an electronic device or an electrical system
- dc voltage sources are divided into three basic types:
 - batteries (chemical action or solar energy)
 - generators (electromechanical)
 - power supplies (rectification from ac sources)





Current

- There is motion of free electrons (in random directions) in an isolated piece of copper wire, but the net flow of charge fails to have a particular direction due to the lack of any drive:
 - hence, no current is generated



28

Current

- When a copper wire is placed across battery terminals, the voltage forces the electrons to move towards the positive terminal of the battery:
 - hence a current is formed

Current

- 'Conventional current', the direction of current flow, is defined to be from positive to negative
- However, electrons are negatively charged, so the electrons themselves are flowing in the opposite direction, from negative to positive
- Electrical theory was devised before the charge on an electron was found to be negative!

30

Current

- The current describes the rate of charge transport
- If a charge of Q has passed a point in a time, t, then the current is defined as: $I = \frac{Q}{t}$

name	symbol	unit symbol	quantity
current	I	А	amperes
charge	Q	С	coulombs
time	t	S	seconds

André-Marie Ampère, French (1775-1836)

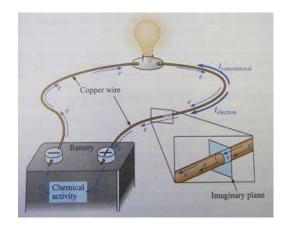
Mathematician and physicist who was one of the founders of electromagnetism

Example

 The charge flowing through the imaginary plane of a copper wire is 0.16 C every 64 ms. Determine the current in amperes.

Solution:

I = Q/t


Q= 0.16 C and t = 64 ms = 6.4×10^{-2} s or 0.064 s

Substituting in the equation \rightarrow I = 0.16 /0.064 = 2.5 A

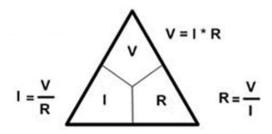
27

Voltage vs. Current

- The applied voltage has established a flow of electrons in a particular direction:
 - the applied voltage is the starting mechanism
 - the current is a reaction to the applied voltage

Voltage and Current

How are voltage and current related?
 Voltage = Resistance x Current


Resistance resists the current flow

Resistance		
Symbol	R	
Units	Ohms	
Unit sysmbol	Ω	

E.g.: Resistance of a bulb is 500Ω

34

Voltage, Current and Resistance Triangle

- The triangle is an easy way to rearrange the equation
- Detailed lectures in week 3

Exercise

(1) The following table lists the seven fundament units. Fill in the blanks.

name	unit symbol	quantity
meter	m	length
kilogram		mass
second	S	
	Α	electric current
kelvin		temperature
candela	cd	
	mol	amount of substance

- (1) Write 147 nF using scientific notation?
- (2) How many micro grams makes 1 kg?
- (3) What is the unit of energy? Newton (N) / joule(J)/ Ampere (A)
- (4) Put the following SI prefixes in ascending order? milli, nano, kilo, maga